Altmel

8-Bit AVR Microcontroller

ATmega32A

DATASHEET COMPLETE

Introduction

The Atmel® ATmega32A is a low-power CMOS 8-bit microcontroller based
on the AVR® enhanced RISC architecture. By executing powerful instructions
in a single clock cycle, the ATmega32A achieves throughputs close to
1MIPS per MHz. This empowers system designer to optimize the device for
power consumption versus processing speed.

Features

» High-performance, Low-power Atmel AVR 8-bit Microcontroller
* Advanced RISC Architecture

131 Powerful Instructions - Most Single-clock Cycle Execution
32 x 8 General Purpose Working Registers

Fully Static Operation

Up to 16MIPS Throughput at 16MHz

On-chip 2-cycle Multiplier

* High Endurance Non-volatile Memory segments

32Kbytes of In-System Self-programmable Flash program
memory

1024Bytes EEPROM

2Kbytes Internal SRAM

Write/Erase cycles: 10,000 Flash/100,000 EEPROM

Data retention: 20 years at 85°C/100 years at 25°C(")

Optional Boot Code Section with Independent Lock Bits
* In-System Programming by On-chip Boot Program
* True Read-While-Write Operation

Programming Lock for Software Security

+ JTAG (IEEE std. 1149.1 Compliant) Interface

Boundary-scan Capabilities According to the JTAG Standard
Extensive On-chip Debug Support

Programming of Flash, EEPROM, Fuses and Lock Bits through
the JTAG Interface

« Atmel QTouch® library support

Atmel-8155|-ATmega32A_Datasheet_Complete-08/2016

Atmel

Capacitive touch buttons, sliders and wheels
Atmel QTouch and QMatrix acquisition
Up to 64 sense channels

Peripheral Features

Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
Real Time Counter with Separate Oscillator
Four PWM Channels
8-channel, 10-bit ADC
» 8 Single-ended Channels
» 7 Differential Channels in TQFP Package Only
» 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
Byte-oriented Two-wire Serial Interface
Programmable Serial USART
Master/Slave SPI Serial Interface
Programmable Watchdog Timer with On-chip Oscillator
On-chip Analog Comparator

Special Microcontroller Features

Power-on Reset and Programmable Brown-out Detection
Internal Calibrated RC Oscillator
External and Internal Interrupt Sources

Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and
Extended Standby

I/0 and Packages

32 Programmable 1/O Lines
40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF

Operating Voltages

2.7-55V

Speed Grades

0 - 16MHz

Power Consumption at 1MHz, 3V, 25°C

Active: 0.6mA
Idle Mode: 0.2mA
Power-down Mode: < 1A

Atmel ATmega32A [DATASHEET] 2
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Table of Contents

INEFOAUCTION. ... 1
FALUIES. ..., 1
S I 7=] T o T 9
2. Configuration SUMMAIY.......cooiuuiiiiiieie et 10
3. 0rdering INfOrmMation..........ouuiiii i 11
O = (o Ted QB =T | = o PP PPPPPR PP 12
5. Pin Configurations. nnranee 13
B.Te VGG reieeeeeeeee e ee ettt enan 14
LT € 1] 5 SR 14
Lo T o] o 7N (N Y) TR RERT 14
5.4, POt B (PB7:PB0)....c..iteitiiiieieeeeieeet ettt bbb st b et b et 15
LR T o1 QO (O 0 =07) T 15
5.6. POM D (PD7:PD0).......oioeeeceeeeeeeeeee oo s e s e e s ee e ee e s eee e s 15
L A S =] i PSP 15
LR D 1 Y I USSR 16
LT D 1 USRS 16
510, AV GG eeeeeeeeeeeee e ee e et ettt ettt ettt ettt e et n e 16
L0t B T o] = SR PUPPPRRNE 16
B. RESOUICES......coi e, 17
7. Data REteNION.......ooiiiiiiie e 18
8. About Code Examples..........coooiiiiii . 19
9. Capacitive TOUCh SENSING........ e 20
TO. AVR CPU COrE....uuuiiiiiii et a e e aaataaaeasseaaessasssssssssssnsssssssnnnnnnes 21
O T B @ = 1= SRR 21
10.2. ALU — Arithmetic LOGIC UNit.......ooiiiiiiiii ettt e e e e e s nnaenaeeeas 22
O TS = (S =T] (= S 22
10.4. General PUrpose REGISIEr Fil..........oiiiiiiiiiie et e e e 24
LR TS =Tt o4 (=Y USSR 25
10.6. Instruction EXeCULiON TiMING........uiiiiiiiiiiiie et e e e e et e e e s e ae e e e e e ensreeeas 26
10.7. Reset and Interrupt HandliNg........oo.eoi oot s e e 27
11, AVR IMBIMOIIES. ..ttt s eeesssesnnnsnnne 29
1 B @ = 1= PSSRSO 29
11.2. In-System Reprogrammable Flash Program MemoOry...........ccocciieiiiieiiiieiniiie e 29
11.3. SRAM Dat@ MEIMOTY.....coeiiiiieiiiee ittt ettt e et e e e st e e st e e snee e e sneeeeaneeeeenneeesnneeeanneeeaanes 30
11.4. EEPROM Data MEMOIY......ccuiiiiiiiieet ettt ettt et e e s 31

S L@ B Y/ [=T0 o T PP ST PU PP PPPTRTN 32

11.6. ReGISTEr DESCIIPION. ... e e e e e e st ae e e e e s e sbe e e e e eensaaneaess 32
12. System Clock and ClOCK OPLiONS.oiiiiiiiiiiiiiiiiee e e e 39
12.1. Clock Systems and their Distribution.............c.ooiiiiiiiii e 39
12.2. ClOCK SOUICES......eiiitiieiiite ettt ettt b e a et e e bt e st e e sab e e e enba e e snteeenabeeas 40
12.3. Default CIOCK SOUICE.eiiiiiieiiiie ettt et e et e e s bt e e e s s bt e e steeesnbeeeeanteeesneeeenneeeean 41
12,4, Crystal OSCIllAtOr.eeiiee ettt e e et e e e nee e e sne e e e et e e eneeeennneenn 41
12.5. Low-frequency Crystal OSCIllator.c.eiiiiiii e 42
12.6. EXternal RC OSCIllator...........ooiiuiiiiiiiieiiie ettt e e 43
12.7. Calibrated Internal RC OSCIllator...........cooiuiiiiiiiiiie e 43
7R T =4 (=Y g = O o o] PR 44
12.9. Timer/Counter OSCIlIAtOr..........ooo e et e e e e e e e e e snraeeeeeeennes 45
P L = To 1] () gl B T=TTor] o) (o) o P SRR 45
13. Power Management and Sleep MOAES...........uuuuu e 47
13,1, SIEEP MOUES. ...ttt ettt et e e et e s e e st e e b e e e e e e e 47
13.2. 118 MOGE.......oo ittt ettt e e e st e et e e e s e e e etseeeenteeeanaaeeasseeeanteeesnneeeanreeean 48
13.3. ADC Noise ReduCtion MOGE........ccuiiiiiiiieiiiie ettt e e e e e 48
13.4. POWEr-AOWN MOttt e e e ettt e e e e sttt e e e e e nneeeeeeeaanneeeeeeeaas 48
13.5. POWEI-SAVE MOGE....... ettt e e ettt e e e ettt e e e e et e e e e e e e annseeeaeeaanneeeeaaeas 48
13.6. StANADY MOGE........ooiiii ettt ettt 49
13.7. Extended Standby MOE..........ccuui it 49
13.8. Minimizing POWer CONSUMIPLION.ceiiiiieeiieeeetiee et e e e e ieeesteeeeeeeeesneeeesseeeeseeeesneeeenneeeeans 49
13.9. RegiSter DESCHIPLION.eiiitiie ettt e e b e 51
14. System Control and RESEt............uuiiiiiiiii 53
14.1. ResettiNg the AVR ettt e e e e e s e e e e 53
L O S LT 0 T TU oSS 53
14.3. Internal Voltage REfErENCE.ccuiiiiiiii e 57
VA= (o aTe (o T T T Y PR OUPRRPRE 57
14.5. Register DeSCIPON.eiiiiiei et et e e e e s e e s 58
S TR 11 (=5 (1] € 62
15.1. Interrupt Vectors in ATMEGAB2A..........uiiiieieeiie ettt e 62
LRSIV S Yo 151 (=Tl I LYo] o (o] o T RSOSSN 66
16. EXternal INterrupts........oo e 69
16.1. ReGiStEr DESCHIPLION.eiiitiie ittt e e e bt e e e sne e e 69
A VL@ TN o TR PPRPR 74
A T O Y= T OSSPSR 74
17.2. Ports as General Digital 1/O..........cooiiiiiiiii e 75
17.3. Alternate Port FUNCHONS.c.uiiiiie et 78
17.4. Register DeSCIPON. it e e e e anaeeeens 88
18. Timer/Counter0 and Timer/Counter1 Prescalers..........ccccccveeeeeiiiciiiiineee e 102
181, OVBIVIEW. ...ttt ettt a ettt e e bt e e i bt e e bt e e ab et e sabee e e ebb e e e aabeeesneeeesaneeean 102
18.2. INterN@l ClOCK SOUFCE.cciiiieiiiii ettt e s e e s nbe e e e neeeenneeas 102

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

4

18.3. PreSCaler RESEL..... ..ottt e e e e et e e e e e e e e 102

18.4. EXternal CIOCK SOUICE.......c..uiiiiiiiiie ittt ettt 102
18.5. Register DESCIIPHON. et e e s e e e e aaenee 103
19. 16-bit TIMEIr/COUNTEIT ... e e e e e eaeeas 105
191, FRAIUIES. ..ottt e e e 105
RS O 1Y =T SR 105
19.3. Accessing 16-bit REGISTErS.......ooo e 107
19.4. Timer/Counter CIOCK SOUICES........coii ittt e e e et e e e e e st e e e e e eennneeeaeeeannees 110
19.5. COUNEET UNt......iiiiiii et st se e e e 110
19.6. INPUL CapPture UNit........ooiiiiiieiee e e et e e et e e e e e s aa e e e e e e snraeeeeeaenees 111
19.7. Output Compare UNItS..........cooeiiiiiiiii et e et e e e e e et r e e e e e eenasreeeeeeennnes 113
19.8. Compare Match OUIPUL UNit.........oooiiiiiiie e e 115
19.9. MOAES Of OPEIatiON.ooiiiiiiiiiiii ettt e e e s e e e e s st e e e e e seatbeeeeeesasssaeeaeeennsseeaeeeans 116
19.10. Timer/Counter TimiNg DiagramS..........coiiiiiiiiiee et e ee e e e e neeeeenees 123
19.11. Register DeSCIIPON. et e e e e e e et e e e e e nnee e e e e e annnee 124
20. 8-bit Timer/Counter2 with PWM and Asynchronous Operation..............c.cccceeee.. 140
20,1, FRAIUIES ..ttt ettt ettt nne e 140
O © Y= TSP 140
20.3. TIMer/Counter CIOCK SOUICES.uuieiiiiieeaiiieeeeieeesieeeeteeeeseeeessaeeeessaeesenseeesnseeeeasaeeesnneeeaneeens 141
D2 I S O7o 10) (=Y LU o1 RS PRRRN 141
20.5. Output CompPare UNit..........cocuiiiei et e et e e e e et e e e e e a e e e e e e snnraeeaeeaan 142
20.6. Compare Match OUtPUL UNit..........ooiiiiiiiiiiee et e e e e 144
20.7. MOAES Of OPEIatiON.cciuiiiiieiie ittt ettt e e sre e e b e 145
20.8. Timer/Counter TiMiNG DiagramS.ciiiuiiiiiiie ittt 149
20.9. Asynchronous Operation of the TImer/COUNTET...........ccoiuiiiiiii i 150
20.10. TiMer/CoUNEr PrESCAIET.........ei ettt ettt et e e s e e s eee e e s e e sneeeeaneeeeanes 152
20.11. RegiSter DESCIIPHION.ciiitiieet ettt e s e s nnn e s e 152
21. 8-bit Timer/CounterO with PWM...........oiii e, 162
b2 I TR == (U = T PP UPRPPPNE 162
g T © Y= 1 SRS 162
21.3. Timer/Counter CIOCK SOUICES.coiiiiieiiiie ettt e e e et e e e e et e e e e e neaeeaeeeanneeeas 163
214, CoUNEEN UNiT.... oottt e e e st e e 163
21.5. Output Compare UNit..........ccouiiiii i e et e e e e e e e e e snraeeeeeann 164
21.6. Compare Match OUIPUL UNit........coiuiiiiiiiii e e 166
21.7. MOAES Of OPEIatiON.cciiiiiiiiiieit ettt e et e et e e sbe e e b e e aaee 167
21.8. Timer/Counter TimiNG DIiagramS..........coiiiuiiiieeieiiiieeeeeeciiee e e e s e e e e e setaaeeeesesneaeeeeeasnreeeeesaanens 171
21.9. Register DEeSCHIPLON.eiiii ittt e e e as 172
22. SPI — Serial Peripheral Interface............oooiiiiiiiiiie e 180
221, FRAIUIES.....eeei ittt ettt e e 180
D O V= V1 SRR 180
22.3. SS Pin FUNCHONAIY........ccooveeeeeeeceeeteeeeee et ete et ete et eteeteaeeteaeeteeeete e eteeeeteeeeseeeesesaeassaeassaeseerennns 183
P S DT = /[To = SRR 184
A T S (= To 151 (Y gl B T=TTor [o] (o) o PRSP S 185

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

5

23.

24.

25.

26.

27.

Atmel

USART - Universal Synchronous and Asynchronous serial Receiver and

LI 115 101 T PSR 190
D22 Tt TR == (U = TSRS UPRTR 190
A T O 1YL= V1= PP RTOURRRRI 190
23.3. ClOCK GENEIALION.iiiiiiiiieitie ettt ettt et sttt et sae e e e ne 192
234, Frame FOMMAS. ...ttt ettt et e e e et e e e e e st e e e e e e bb e e e e e e e nnneeeeeean 195
23.5. USART INItI@IIZALION. ...cc.eiiieieitiiiiieee ettt bbb e 196
23.6. Data Transmission — The USART TranSmitter...........ooooiiiiiiiiiiiiiee e 197
23.7. Data Reception — The USART RECEIVEN..........ccciiiuiiiiei ettt e 199
23.8. Asynchronous Data ReCEPIiON...........ooiiiiiie e 203
23.9. Multi-Processor Communication MOde...........coooiiiiiiiiiiiiiiee e 205
23.10. Accessing UBRRH/UCSRC REGISIENS.uiiiiiiiiiiieeiiiee ettt 206
D2 B O =T 1) (= I L= Yo o] (T o SRR 208
23.12. Examples of Baud Rate Setting........ccooiiiiiiiee e s 217
TWI - Two-wire Serial INterface..........cccuvviiiiiie i 221
240, FRAIUMES......eii ittt ettt b ettt ettt et e e 221
D © Y= TSP 221
24.3. Two-Wire Serial Interface Bus Definition............ooooiiiiiiiiiie e 223
24 4. Data Transfer and Frame FOrmat..........oooo i e 224
24.5. Multi-master Bus Systems, Arbitration and Synchronization.............ccccccoeviiiiiiiiiiiiee e 227
T O 13 Yo I o T I SR 228
24.7. Multi-master Systems and Arbitration..............cooiiiiiiiiiii e 245
24.8. RegiSter DESCIIPIION.ciiitiiiiiiie ettt 246
F YOI AN g =1 [oo J @a 1 4] o = 1= (o] FH P 253
TR I © Y= TSP 253
25.2. Analog Comparator Multiplexed INPUL............cooiiiiiiiiii e 253
ARG T 2= To 151 (Y gl B 1= TTor [o] (o) o PRSP 254
ADC - Analog to Digital CONVEIEr..........ccoii e 258
D2 Tt TR ==Y (U = TR U PRTRN 258
D © V=T Y =SSR PRRR 258
26.3. Starting @ CONVEISION.uiiiiueiieitiee et et ettt e e ettt e et e e se e e e ateeesaneeeesabeeeabaeeeaneeeesnneeeeaneeeeanes 260
26.4. Prescaling and Conversion TiMING..........oioiiriiiieeaieeeiee e see e et seee e seeeeaseeeeesneeeesneeeenneeeens 261
26.5. Changing Channel or Reference Selection...........c.cviviiiiiiiiiiii e 264
26.6. ADC NOISE CANCEIET.........eeiiiiiieieie ettt e e ettt e e ettt ee e e e sbeeeaaesenneeeaeeeannnes 265
26.7. ADC CONVErsioN RESUIL........coouiiiiiiiiiiece ettt 269
26.8. Register DEeSCHIPLON.ciiii et e e e e e e e e e e as 271
JTAG Interface and On-chip Debug System..........cccoociiiiiiiiii i 282
270, FRAIUIES...c.eeei ettt ettt e e ettt ste e ene e 282
A © V= 1 SRS 282
27.3. TAP — TeSt ACCESS POIt. ...ttt e e e et e e e e e e anbeeeaeeenees 283
274, TAP CONIIOIET ...ttt e e e ettt e e e e e et e e e e e abeeeeaeeaannbeeaaeeannneeaaeann 284
27.5. Using the Boundary-sCan Chain............cc.uuiiiiiiiiiiiie e e e e e e e s e nnnaeea e e e nnees 285
27.6. Using the On-chip Debug SySteM..........oiiiiiiiie e 285
27.7. On-chip Debug Specific JTAG INSIrUCHONS.ccciiiiiiiiiiiee e 286

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

6

28.

29.

30.

31.

Atmel

27.8. Using the JTAG Programming Capabilities............cccooiiiiiiiiiiii e 286
DA B = 11 o1 T o =T o] |28 PRSPPI 287
27.10. IEEE 1149.1 (JTAG) BOUNGAIY=-SCaAN.......ccoiiiieiiiieeatieeeeiee e e et e e e snee e s e e saeeesnneeaesnneeean 287
27.11. Data REGISIEIS....cc et 288
27.12. Boundry-scan Specific JTAG INSIUCHONS.c.oeiiiiiiiiiiiie e 290
27.13. Boundary-sCan ChaiN............oiiiiiiiiiie ettt e e e e e e e e e s e satae e e e e s esbaeeeaeeanes 291
27.14. ATmega32A Boundary-SCan Order..........cccuii ittt s e e e e seeeesneeeens 301
27.15. Boundary-scan Description Language Files............cocoiiiiiiiiieiiiieec e 307
27.16. RegiSter DESCIIPON. ..ottt e 308
BTLDR - Boot Loader Support — Read-While-Write Self-Programming................ 311
D4 Tt TR == (U (= T PP UTIPRPRN: 3N
28.2. OVEIVIBW...ceiitiiiiitie ettt ettt ettt ettt et e ek bt e e st et o1 b et e ek e e e e abe e e e R et e e anbe e e e ne e e s nneeeanreeenan 3N
28.3. Application and Boot Loader Flash SECHONS............coociiiiiiiiiiiiiiee e 31
28.4. Read-While-Write and No Read-While-Write Flash Sections...........cccccooviiiiieniniienee e 312
28.5. B0Ot Loader LOCK Bits..........oiiiiiiiiiie ettt e e e s e e e e e nneee 314
28.6. Entering the Boot Loader Program............cocuiieiiiiiiiieeeiiiie et 315
28.7. Addressing the Flash During Self-Programming.........cccccoocoiiiieiiiiiiiiee e 316
28.8. Self-Programming the FIash...........c..ooiiiiiii e 317
28.9. Register DEeSCHIPLON.t e e e e e e e e e e e e e e nnneeee s 324
MemOry ProgrammMing.........c.ueeeeeeieeeiiee et 327
29.1. Program and Data Memory LOCK BitS..........cooiuiiiiiiiiii e 327
20,2, FUSE BilS. it e et e e e e et e e e e e e aneaeeeeeean 328
20.3. SIGNALUIE BYES. ... oo 330
20,4, SIGNAtUIE BYES......oiiiiiii e 330
20.5. Calibration ByLe.......cooiiiieiiiieiie e e e e 330
29.6. Parallel Programming Parameters, Pin Mapping, and Commands..........c.ccccoevecveiiieeenceneneee 330
29.7. Parallel ProgramimMing..........oocueeeiiieeiiiieeeeee ittt e sttt sse e e e st e e snne e e sereeeennneennee 333
20.8. Serial DOWNIOAAING.cciiiiiiiiiit ittt e e nae 341
29.9. Serial Programming Pin Mapping.........ccueeeiuiieiiiieiiie et e e et sneee e snneeeas 341
29.10. Programming Via the JTAG INterface.coouiiiiiiieiee e 345
Electrical CharacteristiCs..........ooiuuiiiiiiie e 359
30.1. DC CharaCteriStiCS.ciuiiiiieitii ittt et seneene e 359
30.2. SPEEA GradES........uviiiie e ettt e ettt e e e et e e e e e e e e e e et e e e e e e et e eeaeeaaaaaeeeeeaannraaaeeaanres 362
30.3. ClOCK CharaCteriStiCS.ccuutitiiiieiitii ittt bbb sbe e 362
30.4. System and Reset CharacteriStiCs..........ouiiiiiiiiiiii e 363
30.5. Two-wire Serial Interface Characteristics.............ccociiiiiiiiiii e 363
30.6. SPI TimiNg CharacteriStiCs.........coueieiiieeeiiie ettt s e e e e e e e e 365
30.7. ADC CharacteriStiCS......c.uutiiuieriiieitieeit ettt ettt ettt b et b e ne e 367
Typical CharaCteriStiCS.uuuiiiiiiiiiiii e 371
311, ACHVE SUPPIY CUITENT. ...ttt e et e e st e e snte e e e be e e sneeeesnneeean 371
31.2. 1dIE SUPPIY CUITENT. ... ittt ettt e e e e seee e e st e e et e e eeneeeesmteeeanseeeennseeeanneeean 374
31.3. Power-down SUPPIY CUITENT.......coiiiiiie ittt e e e naee 377
31.4. POWEr-SAVe SUPPIY CUITENT...ccciiiiiiiiie ettt e ettt e e e e e e e e e st e e e e e s ssbaaeeeesesnneeaeeeannnes 378
31.5. Standby SUPPIY CUIENT........eiiiiee ettt e e e e e e e neeeenneeas 379
318, PN PUIUD ettt b et h e bbbt naee s 379

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

7

32.
33.

34.

35.

36.

Atmel

31.7. Pin Driver SIrenGth........ooo e 381

31.8. Pin Thresholds and HyStEresis.coociiiiiiiiiiiiiiee et seae e e e 383
31.9. BOD Thresholds and Analog Comparator OffSet.............cocoeriiiiiiniiieiee e 386
31.10. Internal OSCIllator SPEEA...........iiiuiiiiieiie i 388
31.11. Current Consumption of Peripheral UnitS.............cooiiiiiiiiiiiiiie e 394
31.12. Current Consumption in Reset and Reset Pulsewidth..............ccccooeiiiiiiiiiiiiiieee 397
Register SUMMAry.........oooiii 399
INStruction Set SUMMArY........ooiiiieee e 401
Packaging INformation..............oooiiiiiii e 406
7 B T ¥ o o T OSSR 406
34.2. AD-PIN PDIP....oe ettt ettt nreea 407
7 R T e oY IRV OSSR 408
[= - 409
35.1. ATmMegad2A, reV. J 10 FEV. Ko ...t e e e e rrae e e e e e nnnraeeens 409
35.2. ATMEga32A, reV. G 10 FEV. L.ueiiiiiie ettt e e e s e e e e e e e 410
Datasheet Revision HiStOry............uviiiiiiiii e 412
36.1. BAB5I = 082018ttt ettt 412
36.2. BAB5H = 08/2016. ... ecueeeeeneeiteeee ettt ettt h et ettt sbe et b e b nneen 412
36.3. 8155G = 1020715 .. ettt ettt ettt ettt a e e e et e e eeeeee et e eeene e neeneeareen 412
LT T i Y] e 0170 L TSRS 412
36.5. BAB5E = 02/2014.....ei e na e 412
36.6. 855D — T0/20713 ..ottt ettt et b et b et nh e bt ene e ne s 412
LT S T O 02 0 L o ST 412
36.8. 8155B — 07/20009.......ceoueieeieeeieeeee et ettt e et e te et e te e et eae e aeeneeaaeeeeeae e st aneeateeneeareenaeareeneearean 413
36.9. B1B5A — 06/2008.......cceiiueeiteiiie ettt ettt r ettt 413

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

8

Description

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to
be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code
efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega32A provides the following features: 32Kbytes of In-System Programmable Flash Program
memory with Read-While-Write capabilities, 1024bytes EEPROM, 2048bytes SRAM, 32 general purpose
I/0 lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging
support and programming, three flexible Timer/Counters with compare modes, Internal and External
Interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit
ADC with optional differential input stage with programmable gain (TQFP package only), a programmable
Watchdog Timer with Internal Oscillator, an SPI serial port, and six software selectable power saving
modes. The Idle mode stops the CPU while allowing the USART, Two-wire interface, A/D Converter,
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode
saves the register contents but freezes the Oscillator, disabling all other chip functions until the next
External Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run,
allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise
Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize
switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running
while the rest of the device is sleeping. This allows very fast start-up combined with low-power
consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue
to run.

The device is manufactured using Atmel’s high density nonvolatile memory technology. The On-chip ISP
Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a
conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core.
The boot program can use any interface to download the application program in the Application Flash
memory. Software in the Boot Flash section will continue to run while the Application Flash section is
updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System
Self-Programmable Flash on a monolithic chip, the Atmel ATmega32A is a powerful microcontroller that
provides a highly-flexible and cost-effective solution to many embedded control applications.

The Atmel AVR ATmega32A is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and
evaluation kits.

AtmeL Atmel ATmega32A [DATASHEET] 9

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

2. Configuration Summary

Pin count 44

Flash (KB) 32

SRAM (KB) 2
EEPROM (KB) 1

General Purpose I/O pins 32

SPI 1

TWI (I2C) 1

USART 1

ADC 10-bit, up to 76.9ksps (15ksps at max resolution)
ADC channels 8

AC propagation delay Typ 400ns
8-bit Timer/Counters 2

16-bit Timer/Counters 1

PWM channels 4

RC Oscillator +/-3%

VREF Bandgap

Operating voltage 2.7-55V
Max operating frequency 16MHz
Temperature range -55°C to +125°C
JTAG Yes
AtmeL Atmel ATmega32A [DATASHEET] 10

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

3. Ordering Information

Speed (MHz) [Power Supply |Ordering Code Operational Range

ATmega32A-AU
ATmega32A-AUR) 44A

ATmega32A-PU 40P6 Industrial (-40°C to 85°C)
ATmega32A-MU 44M1
16 2.7-55V ATmega32A-MUR®) 44M1
ATmega32A-AN 44A
ATmega32A-ANR) 44A
ATmega32A-MN 44MA Extended (-40°C to 105°C)*)

ATmega32A-MNR") 44M1

Note:

1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for
detailed ordering information and minimum quantities.

2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances
(RoHS directive). Also Halide free and fully Green.

3. Tape and Reel
4. See characterization specifications at 105°C

Package Type

44A 44-lead, 10 x 10 x 1.0mm, Thin Profile Plastic Quad Flat Package (TQFP)

40P6 40-pin, 0.600” Wide, Plastic Dual Inline Package (PDIP)

44M1 44-pad, 7 x 7 x 1.0mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

AtmeL Atmel ATmega32A [DATASHEET] 1"

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/
https://www.application-datasheet.com/

4. Block Diagram

Figure 4-1. Block Diagram

TCK
T™MS

TDI
TDO

@y PARPROG

MISO SPIPROG

Clock generation

MISO
MOSI
SCK
SS

SDA
SCL

RxDO
TxDO
XCKO

Atmel

wCcw»-H>»0

PA[7:0]
PBI[7:0]
PC[7:0]
PD[7:0]

INT[2:0]

ADC[7:0]
AREF

AINO
AIN1
ADCMUX

TO

0ocCo

OC1A/B/IC
T
ICP1

0OC2

Atmel ATmega32A [DATASHEET] 12
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

5. Pin Configurations
Figure 5-1. Pinout TQFP ATmega32A

|:| Power 8
o =
. Ground g Z E S g &
. Programming/debug 6‘ Z g - O 8 8 8 8
) o 2 £ €% 222
. Digital <+ o : - o a o O — o~ o
M M oom@mMZ O < < < <
. Analog o oo a O >oa oo o
Bl cvstaiose AP ECAEEE
<t MO N «— O OO O N~ © 1B <
.ﬂ' < T T O O MO O O M
(MOSI) PB5 1 33 [PA4 (ADC4)
(MISO) PB6 2 :r"""""""""_": 32 [PA5 (ADC5)
(SCK) PB7 3 | i 31 [PA6 (ADCS)
RESET | 4 | 30 [d PA7 (ADCT7)
|
VCC 5 ! i 29 [T] AREF
GND i} 6 28 Jll GND
|
XTAL2 7 | 27 [T] AvceC
XTAL1 8 | . 26 [J] PC7 (TOSC2)
| |
(RXD) PDO 9 | 25 PC6 (TOSC1)
(TXD) PD1 10 | | PC5 (TDI)
(INTO) PD2 11 PC4 (TDO)

VCC

GND
(SCL) PCO
(SDA) PC1

(a0
[m)
o
=
Z

(OC1B) PD4
(OC1A) PD5
(ICP1) PD6
(OC2) PD7
(TCK) PC2
(TMS) PC3

AtmeL Atmel ATmega32A [DATASHEET] 13

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 5-2. Pinout PDIP ATmega32A

51. Vec

(XCK/T0) PBO

(T1) PB1

(AINO/ INT2) PB2
(AIN1/0CO0) PB3

(SS) PB4
(MOSI) PB5
(MISO) PB6

(SCK) PB7
RESET
VCC

GND
XTAL2
XTAL1
(RXD) PDO
(TXD) PD1
(INTO) PD2
(INT1) PD3

(OC1B) PD4
(OC1A) PD5

(ICP1) PD6

Digital supply voltage.

5.2. GND

Ground.

53. PortA (PA7:PA0)

Port A serves as the analog inputs to the A/D Converter.

Atmel

© 00 N O O B~ O DN -

N), a2 A A A A A aAa a
© © 00 N O o b WO N -~ O

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

| PAO (ADCO)
] PA1(ADC1)
] PA2 (ADC2)
| PA3 (ADC3)
| PA4 (ADC4)
] PA5 (ADC5)
] PA6 (ADCS6)
| PA7 (ADCT)
| AREF

] GND

] Avce

PC7 (TOSC2)
PC6 (TOSC1)

PC5 (TDI)

PC4 (TDO)
PC3 (TMS)
PC2 (TCK)
PC1 (SDA)
PCO (SCL)
PD7 (OC2)

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

14

Port A also serves as an 8-bit bi-directional 1/0 port, if the A/D Converter is not used. Port pins can
provide internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive
characteristics with both high sink and source capability. When pins PAO to PA7 are used as inputs and
are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A
pins are tristated when a reset condition becomes active, even if the clock is not running.

5.4. Port B (PB7:PB0)
Port B is an 8-bit bi-directional 1/O port with internal pull-up resistors (selected for each bit). The Port B
output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,
Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port
B pins are tristated when a reset condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the ATmega32A as listed in Alternate
Functions of Port B.
Related Links
Alternate Functions of Port B on page 81

5.5. Port C (PC7:PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C
output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,
Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port
C pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG
interface is enabled, the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated
even if a reset occurs.
The TDO pin is tristated unless TAP states that shift out data are entered.
Port C also serves the functions of the JTAG interface and other special features of the ATmega32A as
listed in Alternate Functions of Port C.
Related Links
Alternate Functions of Port C on page 84

5.6. Port D (PD7:PDO0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D
output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,
Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port
D pins are tristated when a reset condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega32A as listed in Alternate
Functions of Port D.
Related Links
Alternate Functions of Port D on page 86

5.7. RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if
the clock is not running. The minimum pulse length is given in System and Reset Characteristics. Shorter
pulses are not guaranteed to generate a reset.

AtmeL Atmel ATmega32A [DATASHEET] 15

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Related Links
System and Reset Characteristics on page 363

5.8. XTALA1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
5.9. XTAL2
Output from the inverting Oscillator amplifier.
5.10. AVcc
AV is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to V¢,
even if the ADC is not used. If the ADC is used, it should be connected to V¢ through a low-pass filter.
5.11. AREF
AREF is the analog reference pin for the A/D Converter.
AtmeL Atmel ATmega32A [DATASHEET] 16

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

6. Resources

A comprehensive set of development tools, application notes and datasheets are available for download
on http://www.atmel.com/avr.

AtmeL Atmel ATmega32A [DATASHEET] 17

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

http://www.atmel.com/avr

7. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM
over 20 years at 85°C or 100 years at 25°C.

AtmeL Atmel ATmega32A [DATASHEET] 18

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

8. About Code Examples

This datasheet contains simple code examples that briefly show how to use various parts of the device.
These code examples assume that the part specific header file is included before compilation. Be aware
that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is
compiler dependent. Please confirm with the C compiler documentation for more details.

AtmeL Atmel ATmega32A [DATASHEET] 19

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

9. Capacitive Touch Sensing
The Atmel QTouch Library provides a simple to use solution to realize touch sensitive interfaces on most
Atmel AVR microcontrollers. The QTouch Library includes support for the QTouch and QMatrix®
acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the
AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors,
and then calling the touch sensing API’s to retrieve the channel information and determine the touch
sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qgtouchlibrary. For implementation details and other information, refer to the Atmel
QTouch Library User Guide - also available for download from the Atmel website.

AtmeL Atmel ATmega32A [DATASHEET] 20

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

http://www.atmel.com/qtouchlibrary
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf

Atmel

AVR CPU Core

Overview

This section discusses the Atmel AVR core architecture in general. The main function of the CPU core is
to ensure correct program execution. The CPU must therefore be able to access memories, perform
calculations, control peripherals, and handle interrupts.

Figure 10-1. Block Diagram of the AVR MCU Architecture

Program

Register file
counter

R31 (ZH) R30 (ZL)

R29 (YH) R28 (YL)

R27 (XH) R26 (XL)
R25 R24
R23 R22 \
R21 R20
R19 R18
R17 R16
R15 R14
R13 R12
R11 R10
R9 R8
R7 R6
R5 R4
R3 R2
R1 RO

Flash program
memory

Instruction

register

Instruction
decode

h J

Data memory

\AA J

Stack
pointer
Status B
register [ALU

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with separate
memories and buses for program and data. Instructions in the Program memory are executed with a
single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the
Program memory. This concept enables instructions to be executed in every clock cycle. The Program
memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock
cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU
operation, two operands are output from the Register File, the operation is executed, and the result is
stored back in the Register File — in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space
addressing — enabling efficient address calculations. One of the these address pointers can also be used

Atmel ATmega32A [DATASHEET] 21
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

as an address pointer for look up tables in Flash Program memory. These added function registers are
the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a
register. Single register operations can also be executed in the ALU. After an arithmetic operation, the
Status Register is updated to reflect information about the result of the operation.

The Program flow is provided by conditional and unconditional jump and call instructions, able to directly
address the whole address space. Most AVR instructions have a single 16-bit word format. Every
Program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot program section and the Application
program section. Both sections have dedicated Lock Bits for write and read/write protection. The SPM
instruction that writes into the Application Flash memory section must reside in the Boot program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack.
The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only
limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the
reset routine (before subroutines or interrupts are executed). The Stack Pointer SP is read/write
accessible in the 1/0 space. The data SRAM can easily be accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/0 space with an additional global interrupt
enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector
table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the
Interrupt Vector address, the higher the priority.

The 1/0O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI,
and other 1/O functions. The I1/O Memory can be accessed directly, or as the Data Space locations
following those of the Register File, 0x20 - Ox5F.

ALU — Arithmetic Logic Unit

The high-performance Atmel AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose registers or
between a register and an immediate are executed. The ALU operations are divided into three main
categories — arithmetic, logical, and bit-functions. Some implementations of the architecture also provide
a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the
“Instruction Set” section for a detailed description.

Status Register

The Status Register contains information about the result of the most recently executed arithmetic
instruction. This information can be used for altering program flow in order to perform conditional
operations. Note that the Status Register is updated after all ALU operations, as specified in the
Instruction Set Reference. This will in many cases remove the need for using the dedicated compare
instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored when
returning from an interrupt. This must be handled by software.

AtmeL Atmel ATmega32A [DATASHEET] 22

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

10.3.1. SREG - The AVR Status Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
Name: SREG
Offset: Ox3F
Reset: 0x00
Property: When addressing I/O Registers as data space the offset address is Ox5F
Bit 7 6 5 4 3 2 1 0
I T H S v N z c
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 — I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt
enable control is then performed in separate control registers. If the Global Interrupt Enable Register is
cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-
bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable
subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI
instructions, as described in the Instruction Set Reference.
Bit 6 — T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for
the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and
a bitin T can be copied into a bit in a register in the Register File by the BLD instruction.
Bit 5 — H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful in BCD
arithmetic. See the “Instruction Set Description” for detailed information.
Bit4-S: SignBit,S=Na&o V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow
Flag V. See the “Instruction Set Description” for detailed information.
Bit 3 — V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the “Instruction Set
Description” for detailed information.
Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.
Bit1 - Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.
AtmeL Atmel ATmega32A [DATASHEET] 23

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Bit 0 — C: Carry Flag
The Carry Flag C indicates a Carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

10.4. General Purpose Register File
The Register File is optimized for the Atmel AVR Enhanced RISC instruction set. In order to achieve the
required performance and flexibility, the following input/output schemes are supported by the Register
File:
* One 8-bit output operand and one 8-bit result input.
« Two 8-bit output operands and one 8-bit result input.
* Two 8-bit output operands and one 16-bit result input.
* One 16-bit output operand and one 16-bit result input.
The following figure shows the structure of the 32 general purpose working registers in the CPU.
Figure 10-2. AVR CPU General Purpose Working Registers
7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 0x0E
Purpose R15 0x0F
Working R16 0x10
Registers R17 Ox11
R26 0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 0x1E Z-register Low Byte
R31 0x1F Z-register High Byte
Most of the instructions operating on the Register File have direct access to all registers, and most of
them are single cycle instructions.
As shown in the figure above, each register is also assigned a Data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically implemented as
SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-,
Y-, and Z-pointer Registers can be set to index any register in the file.
10.4.1. The X-register, Y-register and Z-register
The registers R26:R31 have some added functions to their general purpose usage. These registers are
16-bit address pointers for indirect addressing of the Data Space. The three indirect address registers X,
Y and Z are defined as described in the following figure.
/Itm eL Atmel ATmega32A [DATASHEET] 24

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 10-3. The X-, Y- and Z-Registers

15 XH XL 0
X-register 7 of7 0
R27 (0x1B) R26 (0x1A)
15 YH YL 0
Y-register 7 of7 0
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register 7 0 7 0
R31 (0x1F) R30 (0x1E)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the Instruction Set Reference for details).

Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing return
addresses after interrupts and subroutine calls. Note that the Stack is implemented as growing from
higher to lower memory locations. The Stack Pointer Register always points to the top of the Stack. The
Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located.
A Stack PUSH command will decrease the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or
interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the
Stack Pointer must be set to point above start of the SRAM, refer to figure Data Memory Map in SRAM
Data Memory.

The following table contains Stack Pointer details.

Table 10-1. Stack Pointer instructions

PUSH Decremented by 1 | Data is pushed onto the stack

CALL Decremented by 2 Return address is pushed onto the stack with a subroutine
ICALL call or interrupt

RCALL

POP Incremented by 1 | Data is popped from the stack

RET Incremented by 2 Return address is popped from the stack with return from
RETI subroutine or return from interrupt

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually
used is implementation dependent. Note that the data space in some implementations of the AVR
architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.

AtmeL Atmel ATmega32A [DATASHEET] 25

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 10-4. SPH and SPL - Stack Pointer High and Low Register

Bit 15 14 13 12 11 10 9 8
0x3E SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
0x3D SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Related Links
SRAM Data Memory on page

10.6. Instruction Execution Timing

30

This section describes the general access timing concepts for instruction execution. The Atmel AVR CPU

is driven by the CPU clock clkcpy, directly generated from the selected clock source for the chip. No

internal clock division is used.

The following figure shows the parallel instruction fetches and instruction executions enabled by the

Harvard architecture and the fast-access Register File concept. This is the basic pipelining concept to
obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per

clocks, and functions per power-unit.

Figure 10-5. The Parallel Instruction Fetches and Instruction Executions

clk

T1

T2

T3 T4
I I
I I
I I

A A N £ U A N

CPU
Ist Instruction Fetch

Ist Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch

The next figure shows the internal timing concept for the Register File. In a single clock cycle an ALU

!
|
!
!
|
|
!
!
T
|
|
t
!
!

|
!
[
1
!
|
|
!
!
T
|
|
t
!
!

|
!
|
!
!
T
|
!
!
T
|
|
t
!
!

operation using two register operands is executed, and the result is stored back to the destination

register.

Figure 10-6. Single Cycle ALU Operation

clk

CPU
Total Execution Time

Register Operands Fetch
ALU Operation Execute

Result Write Back

Atmel

! !
| |
| |
| |
! !
| |
[[
| |
! !
T T
! !
| |
t t
| |
! !

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

26

Reset and Interrupt Handling

The Atmel AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate Program Vector in the Program memory space. All interrupts are assigned
individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the
Status Register in order to enable the interrupt. Depending on the Program Counter value, interrupts may
be automatically disabled when Boot Lock Bits BLB02 or BLB12 are programmed. This feature improves
software security. See the section Memory Programming for details.

The lowest addresses in the Program memory space are by default defined as the Reset and Interrupt
Vectors. The complete list of Vectors is shown in Interrupts . The list also determines the priority levels of
the different interrupts. The lower the address the higher is the priority level. RESET has the highest
priority, and next is INTO — the External Interrupt Request 0. The Interrupt Vectors can be moved to the
start of the boot Flash section by setting the Interrupt Vector Select (IVSEL) bit in the General Interrupt
Control Register (GICR). Refer to Interrupts for more information. The Reset Vector can also be moved to
the start of the boot Flash section by programming the BOOTRST Fuse, see Boot Loader Support —
Read-While-Write Self-Programming.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The
user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then
interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt
instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt
Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to
execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt
Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt
condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and
remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding Interrupt
Flag(s) will be set and remembered until the global interrupt enable bit is set, and will then be executed by
order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do
not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled,
the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more
instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored
when returning from an interrupt routine. This must be handled by software.

When using the CLlI instruction to disable interrupts, the interrupts will be immediately disabled. No
interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction.
The following example shows how this can be used to avoid interrupts during the timed EEPROM write
sequence.

Assembly Code Example

in rl6, SREG ; store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMWE ; start EEPROM write

sbi EECR, EEWE

out SREG, rl6 ; restore SREG value (I-bit)

AtmeL Atmel ATmega32A [DATASHEET] 27

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

10.7.1.

C Code Example

char cSREG;
CcSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */

_CLI();
EECR |= (1<<EEMWE); /* start EEPROM write */
EECR |= (1<<EEWE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before
any pending interrupts, as shown in the following example.

Assembly Code Example

sei ; set global interrupt enable

sleep ; enter sleep, waiting for interrupt
; note: will enter sleep before any pending
; interrupt (s)

C Code Example

_enable interrupt(); /* set global interrupt enable */
_SLEEP(); /* enter sleep, waiting for interrupt */
/* note: will enter sleep before any pending interrupt(s) */

Related Links

Memory Programming on page 327

[nterrupts on page 62

BTLDR - Boot Loader Support — Read-While-Write Self-Programming on page 311

Interrupt Response Time

The interrupt execution response for all the enabled Atmel AVR interrupts is four clock cycles minimum.
After four clock cycles, the Program Vector address for the actual interrupt handling routine is executed.
During this 4-clock cycle period, the Program Counter is pushed onto the Stack. The Vector is normally a
jump to the interrupt routine, and this jump takes three clock cycles. If an interrupt occurs during
execution of a multi-cycle instruction, this instruction is completed before the interrupt is served. If an
interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by
four clock cycles. This increase comes in addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the
Program Counter (2 bytes) is popped back from the Stack, the Stack Pointer is incremented by 2, and the
I-bit in SREG is set.

AtmeL Atmel ATmega32A [DATASHEET] 28

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

11. AVR Memories

11.1. Overview
This section describes the different memories in the Atmel AVR ATmega32A. The AVR architecture has
two main memory spaces, the Data memory and the Program Memory space. In addition, the
ATmega32A features an EEPROM Memory for data storage. All three memory spaces are linear and
regular.

11.2. In-System Reprogrammable Flash Program Memory
The ATmega32A contains 32K bytes On-chip In-System Reprogrammable Flash memory for program
storage. Since all AVR instructions are 16- or 32-bits wide, the Flash is organized as 16K x 16 bits. For
software security, the Flash Program memory space is divided into two sections, Boot Program section
and Application Program section.
The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega32A Program
Counter (PC) is 14 bits wide, thus addressing the 16K Program memory locations. The operation of Boot
Program section and associated Boot Lock Bits for software protection are described in detail in Boot
Loader Support — Read-While-Write Self-Programming. Memory Programming contains a detailed
description on Flash Programming in SPI, JTAG, or Parallel Programming mode.
Constant tables can be allocated within the entire Program memory address space (see the LPM — Load
Program memory instruction description).
Timing diagrams for instruction fetch and execution are presented in Instruction Execution Timing.
Figure 11-1. Program Memory Map

$0000
Application Flash Section
Boot Flash Section
$7TFFF

Related Links
BTLDR - Boot Loader Support — Read-While-Write Self-Programming on page 311
Memory Programming on page 327
[nstruction Execution Timing on page 26

AtmeL Atmel ATmega32A [DATASHEET] 29

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

11.3. SRAM Data Memory
The figure below shows how the Atmel AVR ATmega32A SRAM Memory is organized.
The lower 2144 Data memory locations address the Register File, the I/O Memory, and the internal data
SRAM. The first 96 locations address the Register File and I/O Memory, and the next 2048 locations
address the internal data SRAM.
The five different addressing modes for the Data memory cover: Direct, Indirect with Displacement,
Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register File, registers R26
to R31 feature the indirect addressing pointer registers.
The direct addressing reaches the entire data space.
The Indirect with Displacement mode reaches 63 address locations from the base address given by the
Y- or Z-register.
When using register indirect addressing modes with automatic pre-decrement and post-increment, the
address registers X, Y and Z are decremented or incremented.
The 32 general purpose working registers, 64 /O Registers, and the 2048 bytes of internal data SRAM in
the ATmega32A are all accessible through all these addressing modes. The Register File is described in
General Purpose Register File.
Figure 11-2. Data Memory Map
Register File Data Address Space
RO [T $0000
R1 $0001
R2 $0002
R29 $001D
R30 S001E
R31 $001F
VO Registers
$00 $0020
$01 $0021
$02 $0022
$3D $005D
$3E S005E
3¢ - $005F
Internal SRAM
$0060
$0061
S$045E
$045F
Related Links
General Purpose Register File on page 24
11.3.1. Data Memory Access Times
This section describes the general access timing concepts for internal memory access. The internal data
SRAM access is performed in two clkgpy cycles as described in the figure below.
AtmeL Atmel ATmega32A [DATASHEET] 30

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

11.4.

11.4.1.

Figure 11-3. On-chip Data SRAM Access Cycles

T1 T2 T3
[[[
| | |
| | |

STy A U S U A

cpPU X

|
| |
Address : Compute Address :X Address Valid :
| | |
I I T JR—
Data 7 T \ .
| | | 2
| | 1
WR e U
i i | —
| | ! _
Data t | -
1 1 T =
1 1 1 g
RD I [e A ~
T T I pu—
| | |
Memory Vccess Instruction Next Instruction

EEPROM Data Memory

The Atmel AVR ATmega32A contains 1Kbyte of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at least
100,000 write/erase cycles. The access between the EEPROM and the CPU is described below,
specifying the EEPROM Address Registers, the EEPROM Data Register, and the EEPROM Control
Register.

Memory Programming contains a detailed description on EEPROM Programming in SPI, JTAG, or
Parallel Programming mode.

Related Links

Memory Programming on page 327

EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the 1/0 space.

The write access time for the EEPROM is given in the table "EEPROM Programming Time". A self-timing
function, however, lets the user software detect when the next byte can be written. If the user code
contains instructions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, V¢ is likely to rise or fall slowly on Power-up/down. This causes the device for some period of
time to run at a voltage lower than specified as minimum for the clock frequency used. See Preventing
EEPROM Corruption for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer to
the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next instruction
is executed.

Related Links
EECR on page 36

AtmeL Atmel ATmega32A [DATASHEET] 31

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

11.4.2.

EEPROM Write during Power-down Sleep Mode

When entering Power-down sleep mode while an EEPROM write operation is active, the EEPROM write
operation will continue, and will complete before the Write Access time has passed. However, when the
write operation is completed, the Oscillator continues running, and as a consequence, the device does
not enter Power-down entirely. It is therefore recommended to verify that the EEPROM write operation is
completed before entering Power-down.

11.4.3. Preventing EEPROM Corruption
During periods of low V¢ the EEPROM data can be corrupted because the supply voltage is too low for
the CPU and the EEPROM to operate properly. These issues are the same as for board level systems
using EEPROM, and the same design solutions should be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular
write sequence to the EEPROM requires a minimum voltage to operate correctly. Second, the CPU itself
can execute instructions incorrectly, if the supply voltage is too low.
EEPROM data corruption can easily be avoided by following this design recommendation:
Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done
by enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does not
match the needed detection level, an external low V¢ Reset Protection circuit can be used. If a reset
occurs while a write operation is in progress, the write operation will be completed provided that the
power supply voltage is sufficient.

11.5. /O Memory
The 1/0O space definition of the ATmega32A is shown in Register Summary.
All ATmega32A 1/Os and peripherals are placed in the I/O space. The I/O locations are accessed by the
IN and OUT instructions, transferring data between the 32 general purpose working registers and the 1/0
space. /O Registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI and
CBIl instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC
instructions. Refer to the instruction set section for more details. When using the I/O specific commands
IN and OUT, the I/0O addresses 0x00 - Ox3F must be used. When addressing I/O Registers as data space
using LD and ST instructions, 0x20 must be added to these addresses.
For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/0O
memory addresses should never be written.
Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI
instructions will operate on all bits in the /O Register, writing a one back into any flag read as set, thus
clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
The 1/O and Peripherals Control Registers are explained in later sections.
Related Links
Register Summary on page 399

11.6. Register Description

AtmeL Atmel ATmega32A [DATASHEET] 32

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

11.6.1. EEARL — The EEPROM Address Register Low

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: EEARL

Offset: Ox1E

Reset: OxXX

Property: When addressing I/O Registers as data space the offset address is 0x3E

Bit 7 6 5 4 3 2 1 0
EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 7:0 - EEARn: EEPROM Address [n = 7:0]

The EEPROM Address Registers — EEARH and EEARL — specify the EEPROM address in the 1Kbyte
EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 1024. The initial value
of EEAR is undefined. A proper value must be written before the EEPROM may be accessed.

AtmeL Atmel ATmega32A [DATASHEET] 33

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

11.6.2.

EEARH — The EEPROM Address Register High

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: EEARH
Offset: Ox1F
Reset: OxXX

Property: When addressing I/O Registers as data space the offset address is 0x3F

Bit 7 6 5 4 3 2 1 0
EEAR9 EEARS8
Access R/W R/W
Reset X X

Bit 1 — EEAR9: EEPROM Address

Bit 0 - EEAR8: EEPROM Address
Refer to EEARL.

Atmel ATmega32A [DATASHEET]
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

34

Atmel

11.6.3. EEDR - The EEPROM Data Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: EEDR

Offset: Ox1D

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x3D

Bit 7 6 5 4 3 2 1 0
EEDR? EEDRG6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDRO
Access R/W RwW R/W R/wW R/wW R/wW R/wW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - EEDRn: EEPROM Data [n = 7:0]

For the EEPROM write operation, the EEDR Register contains the data to be written to the EEPROM in
the address given by the EEAR Register. For the EEPROM read operation, the EEDR contains the data
read out from the EEPROM at the address given by EEAR.

- EEDR[7]is MSB
- EEDR[0]is LSB

AtmeL Atmel ATmega32A [DATASHEET] 35

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

11.6.4.

Bit

Access

Reset

EECR - The EEPROM Control Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: EECR

Offset: 0x1C

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x3C

7 6 5 4 3 2 1 0
EERIE EEMWE EEWE EERE
R/W R/W R/W R/W
0 0 X 0

Bit 3 — EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set. Writing EERIE to
zero disables the interrupt. The EEPROM Ready interrupt generates a constant interrupt when EEWE is
cleared.

Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be written. When
EEMWE is set, setting EEWE within four clock cycles will write data to the EEPROM at the selected
address. If EEMWE is zero, setting EEWE will have no effect. When EEMWE has been written to one by
software, hardware clears the bit to zero after four clock cycles. See the description of the EEWE bit for
an EEPROM write procedure.

Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable Signal EEWE is the write strobe to the EEPROM. When address and data
are correctly set up, the EEWE bit must be written to one to write the value into the EEPROM. The
EEMWE bit must be written to one before a logical one is written to EEWE, otherwise no EEPROM write
takes place. The following procedure should be followed when writing the EEPROM (the order of steps 3
and 4 is not essential):

Wait until EEWE becomes zero.

Wait until SPMEN in SPMCR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMWE bit while writing a zero to EEWE in EECR.
6. Within four clock cycles after setting EEMWE, write a logical one to EEWE.

ok 0N~

The EEPROM can not be programmed during a CPU write to the Flash memory. The software must
check that the Flash programming is completed before initiating a new EEPROM write. Step 2 is only
relevant if the software contains a boot loader allowing the CPU to program the Flash. If the Flash is
never being updated by the CPU, step 2 can be omitted. See Boot Loader Support — Read-While-Write
Self-Programming for details about boot programming.

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM Master
Write Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM
access, the EEAR or EEDR Register will be modified, causing the interrupted EEPROM access to fail. It
is recommended to have the Global Interrupt Flag cleared during all the steps to avoid these problems.

AtmeL Atmel ATmega32A [DATASHEET] 36

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

When the write access time has elapsed, the EEWE bit is cleared by hardware. The user software can
poll this bit and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted
for two cycles before the next instruction is executed.

Bit 0 —- EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct address
is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the EEPROM read.
The EEPROM read access takes one instruction, and the requested data is available immediately. When
the EEPROM is read, the CPU is halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in progress, it
is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. The following table lists the typical
programming time for EEPROM access from the CPU.

Table 11-1. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles''’ | Typ Programming Time

EEPROM Write (from CPU) 8448 8.5ms

Note: 1. Uses 1MHz clock, independent of CKSEL Fuse settings.

The following code examples show one assembly and one C function for writing to the EEPROM. The
examples assume that interrupts are controlled (for example by disabling interrupts globally) so that no
interrupts will occur during execution of these functions. The examples also assume that no Flash boot
loader is present in the software. If such code is present, the EEPROM write function must also wait for
any ongoing SPM command to finish.

Assembly Code Example

EEPROM write:
; Wait for completion of previous write
sbic EECR, EEWE
rjmp EEPROM write
; Set up address (rl8:rl7) in address register
out EEARH, rl8
out EEARL, rl7
; Write data (rl6) to data register
out EEDR,rl6
; Write logical one to EEMWE
sbi EECR, EEMWE
; Start eeprom write by setting EEWE
sbi EECR, EEWE
ret

C Code Example

void EEPROM write (unsigned int uiAddress, unsigned char ucData)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEWE))

/* Set up address and data registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMWE */

EECR |= (1<<EEMWE);
/* Start eeprom write by setting EEWE */
EECR |= (1<<EEWE) ;
}
AtmeL Atmel ATmega32A [DATASHEET] 37

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

The next code examples show assembly and C functions for reading the EEPROM. The examples
assume that interrupts are controlled so that no interrupts will occur during execution of these functions.

Assembly Code Example

EEPROM read:

; Wait for completion of previous write
sbic EECR, EEWE

rjmp EEPROM read

; Set up address (rl8:rl7) in address register
out EEARH, rl8

out EEARL, rl7

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from data register

in rl6,EEDR

ret

C Code Example

{

unsigned char EEPROM read(unsigned int uiAddress)

/* Wait for completion of previous write */
while (EECR & (1<<EEWE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */
EECR |= (1<<EERE) ;

/* Return data from data register */

return EEDR;

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

38

121.1.

12.1.2.

Atmel

System Clock and Clock Options

Clock Systems and their Distribution

The figure below presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules not
being used can be halted by using different sleep modes, as described in Power Management and Sleep
Modes. The clock systems are detailed in the following figure.

Figure 12-1. Clock Distribution

Asynchronous General VO Flash and
Timer/Counter Modules ADC CPU Core RAM EEPROM
[A A [A A A A

clk e
clkyo AVR Clock clkepy
Control Unit
clkysy clkpp xsi
A A
Reset Logic Watchdog Timer
T :
Source Clock Watchdog Clock
Clock Watchdog
Multiplexer Oscillator
A A A A A
Timer/Counter External RC Crystal Low-Frequency Calibrated RC
Oscillator Oscillator External Clock Oscillator Crystal Oscillator Oscillator

CPU Clock - Clkcpu

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of
such modules are the General Purpose Register File, the Status Register and the Data memory holding
the Stack Pointer. Halting the CPU clock inhibits the core from performing general operations and
calculations.

1/0 Clock — Clk"o

The 1/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART. The I/0
clock is also used by the External Interrupt module, but note that some external interrupts are detected by
asynchronous logic, allowing such interrupts to be detected even if the I/O clock is halted. Also note that
address recognition in the TWI module is carried out asynchronously when clko is halted, enabling TWI
address reception in all sleep modes.

Atmel ATmega32A [DATASHEET] 39
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

12.1.3.

Flash Clock - clkg_asH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simultaneously
with the CPU clock.

12.1.4. Asynchronous Timer Clock — clkasy
The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly from an
external 32kHz clock crystal. The dedicated clock domain allows using this Timer/Counter as a real-time
counter even when the device is in sleep mode.
12.1.5. ADC Clock - clkapc
The ADC is provided with a dedicated clock domain. This allows halting the CPU and 1/O clocks in order
to reduce noise generated by digital circuitry. This gives more accurate ADC conversion results.
12.2. Clock Sources
The device has the following clock source options, selectable by Flash Fuse Bits as shown below. The
clock from the selected source is input to the AVR clock generator, and routed to the appropriate
modules.
Table 12-1. Device Clocking Options Select
Device Clocking Option CKSEL3:0
External Crystal/Ceramic Resonator 1111 - 1010
External Low-frequency Crystal 1001
External RC Oscillator 1000 - 0101
Calibrated Internal RC Oscillator 0100 - 0001
External Clock 0000
Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.
The various choices for each clocking option is given in the following sections. When the CPU wakes up
from Power-down or Power-save, the selected clock source is used to time the start-up, ensuring stable
Oscillator operation before instruction execution starts. When the CPU starts from reset, there is as an
additional delay allowing the power to reach a stable level before commencing normal operation. The
Watchdog Oscillator is used for timing this real-time part of the start-up time. The number of WDT
Oscillator cycles used for each time-out is shown in the table below. The frequency of the Watchdog
Oscillator is voltage dependent as shown in Typical Characteristics.
Table 12-2. Number of Watchdog Oscillator Cycles
Typical Time-out (Ve = 5.0V) Typical Time-out (V¢c = 3.0V) Number of Cycles
4.1ms 4.3ms 4K (4,096)
65ms 69ms 64K (65,536)
Related Links
Typical Characteristics on page 371
AtmeL Atmel ATmega32A [DATASHEET] 40

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

12.4.

Default Clock Source

The device is shipped with CKSEL = “0001” and SUT = “10”. The default clock source setting is therefore
the Internal RC Oscillator with longest startup time. This default setting ensures that all users can make
their desired clock source setting using an In-System or Parallel Programmer.

Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for
use as an On-chip Oscillator, as shown in the figure below. Either a quartz crystal or a ceramic resonator
may be used. The CKOPT Fuse selects between two different Oscillator amplifier modes. When CKOPT
is programmed, the Oscillator output will oscillate a full rail-to-rail swing on the output. This mode is
suitable when operating in a very noisy environment or when the output from XTAL2 drives a second
clock buffer. This mode has a wide frequency range. When CKOPT is unprogrammed, the Oscillator has
a smaller output swing. This reduces power consumption considerably. This mode has a limited
frequency range and it cannot be used to drive other clock buffers.

For resonators, the maximum frequency is 8MHz with CKOPT unprogrammed and 16MHz with CKOPT
programmed. C1 and C2 should always be equal for both crystals and resonators. The optimal value of
the capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. Some initial guidelines for choosing capacitors for use with
crystals are given in the next table. For ceramic resonators, the capacitor values given by the
manufacturer should be used.

Figure 12-2. Crystal Oscillator Connections

10
)

XTAL2
o S 1 IxtALl

GND

e

The Oscillator can operate in three different modes, each optimized for a specific frequency range. The
operating mode is selected by the fuses CKSEL3:1 as shown in the following table.

Table 12-3. Crystal Oscillator Operating Modes

CKOPT() | CKSEL3:1 |Frequency Range(MHz) | Recommended Range for Capacitors C1 and C2
for Use with Crystals (pF)

1012 0.4-0.9
1 110 0.9-3.0 12-22
1 111 3.0-8.0 12-22
0 101, 110, 111 1.0 -16.0 12-22

Note:
1. When CKOPT is programmed (0), the oscillator output will be a full rail-to-rail swing on the output.
2. This option should not be used with crystals, only with ceramic resonators.

AtmeL Atmel ATmega32A [DATASHEET] 41

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

The CKSELO Fuse together with the SUT1:0 Fuses select the start-up times as shown in the next table.
Table 12-4. Start-up Times for the Crystal Oscillator Clock Selection

CKSELO [SUT1:0 | Start-up Time Additional Delay |Recommended Usage

from Power-down |from Reset
and Power-save (Ve = 5.0V)

0 00 258 CK(") 4.1ms Ceramic resonator, fast rising power

0 01 258 CK") 65ms Ceramic resonator, slowly rising power
0 10 1K CK®) - Ceramic resonator, BOD enabled

0 1 1K CK? 4.1ms Ceramic resonator, fast rising power

1 00 1K CK@ 65ms Ceramic resonator, slowly rising power
1 01 16K CK - Crystal Oscillator, BOD enabled

1 10 16K CK 4.1ms Crystal Oscillator, fast rising power

1 11 16K CK 65ms Crystal Oscillator, slowly rising power
Note:

1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These options
are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability at
start-up. They can also be used with crystals when not operating close to the maximum frequency
of the device, and if frequency stability at start-up is not important for the application.

12.5. Low-frequency Crystal Oscillator
To use a 32.768kHz watch crystal as the clock source for the device, the Low-frequency Crystal Oscillator
must be selected by setting the CKSEL Fuses to “1001”. The crystal should be connected as shown in
Figure 12-2. By programming the CKOPT Fuse, the user can enable internal capacitors on XTAL1 and
XTAL2, thereby removing the need for external capacitors. The internal capacitors have a nominal value
of 36pF.
When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in the table
below.
Table 12-5. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection
SUT1:0 |Start-up Time from Additional Delay Recommended Usage
Power-down and from Reset
Power-save (Vcc = 5.0V)
00 1K CK") 4.1ms Fast rising power or BOD enabled
01 1K CK'") 65ms Slowly rising power
10 32K CK 65ms Stable frequency at start-up
11 Reserved
Note: 1. These options should only be used if frequency stability at start-up is not important for the
application.
Atmel ATmega32A [DATASHEET] 42
me

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

12.6. External RC Oscillator
For timing insensitive applications, the external RC configuration shown in the figure below can be used.
The frequency is roughly estimated by the equation f = 1/(3RC). C should be at least 22pF. By
programming the CKOPT Fuse, the user can enable an internal 36pF capacitor between XTAL1 and
GND, thereby removing the need for an external capacitor.
Figure 12-3. External RC Configuration
VCC
R $ NC ———XTAL2
I XTALI
C
j GND
The Oscillator can operate in four different modes, each optimized for a specific frequency range. The
operating mode is selected by the fuses CKSEL3:0 as shown in the following table.
Table 12-6. External RC Oscillator Operating Modes
CKSEL3:0 Frequency Range (MHz)
0101 0.1-0.9
0110 09-3.0
0111 3.0-8.0
1000 8.0-12.0
When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in the table
below.
Table 12-7. Start-up Times for the External RC Oscillator Clock Selection
Start-up Time from Additional Delay Recommended Usage
Power-down and from Reset
Power-save (Vcc =5.0V)
00 18 CK - BOD enabled
01 18 CK 4.1ms Fast rising power
10 18 CK 65ms Slowly rising power
1 6 CK" 4.1ms Fast rising power or BOD enabled
Note: 1. This option should not be used when operating close to the maximum frequency of the device.
12.7. Calibrated Internal RC Oscillator
The calibrated internal RC Oscillator provides a fixed 1.0, 2.0, 4.0, or 8.0MHz clock. All frequencies are
nominal values at 5V and 25°C. This clock may be selected as the system clock by programming the
CKSEL Fuses as shown in the following table. If selected, it will operate with no external components.
Atmel ATmega32A [DATASHEET]
me *

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

The CKOPT Fuse should always be unprogrammed when using this clock option. During reset, hardware
loads the 1MHz calibration byte into the OSCCAL Register and thereby automatically calibrates the RC
Oscillator. At 5V, 25°C and 1.0MHz Oscillator frequency selected, this calibration gives a frequency within
+ 3% of the nominal frequency. Using calibration methods as described in application notes available at
www.atmel.com/avr it is possible to achieve + 1% accuracy at any given V¢ and Temperature. When this
Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer and
for the Reset Time-out. For more information on the pre-programmed calibration value, see the section
Calibration Byte.

Table 12-8. Internal Calibrated RC Oscillator Operating Modes

CKSEL3:0 Nominal Frequency (MHz)

0001 1.0
0010 2.0
0011 4.0
0100 8.0

Note: 1. The device is shipped with this option selected.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in the
following table. XTAL1 and XTAL2 should be left unconnected (NC).

Table 12-9. Start-up Times for the Internal Calibrated RC Oscillator Clock Selection

SUT1:0 | Start-up Time from Power-down Additional Delay from Reset | Recommended Usage
and Power-save (Vcc = 5.0V)

6 CK BOD enabled
01 6 CK 4.1ms Fast rising power
10 6CK 65ms Slowly rising power
11 Reserved

Note: 1. The device is shipped with this option selected.

Related Links
Calibration Byte on page 330

12.8. External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in the figure below.
To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”. By
programming the CKOPT Fuse, the user can enable an internal 36pF capacitor between XTAL1 and
GND.

AtmeL Atmel ATmega32A [DATASHEET] 44

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

http://www.atmel.com/avr

12.9.

Figure 12-4. External Clock Drive Configuration

NC —— XTAL2

EXTERNAL
CLOCK
SIGNAL

XTAL1

|II|}—‘
(@)
4
o

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in the
following table.

Table 12-10. Start-up Times for the External Clock Selection

Start-up Time from

Additional Delay

Recommended Usage

Power-down and from Reset

Power-save (Vcc =5.0V)
00 6 CK - BOD enabled
01 6 CK 4.1ms Fast rising power
10 6 CK 65ms Slowly rising power
11 Reserved

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to
ensure stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the
next can lead to unpredictable behavior. It is required to ensure that the MCU is kept in Reset during such
changes in the clock frequency.

Timer/Counter Oscillator

For AVR microcontrollers with Timer/Counter Oscillator pins (TOSC1 and TOSCZ2), the crystal is
connected directly between the pins. No external capacitors are needed. The Oscillator is optimized for
use with a 32.768kHz watch crystal. Applying an external clock source to TOSC1 is not recommended.

Note: 1. The Timer/Counter Oscillator uses the same type of crystal oscillator as Low-Frequency
Oscillator and the internal capacitors have the same nominal value of 36pF.

12.10. Register Description

Atmel

Atmel ATmega32A [DATASHEET] 45
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

12.10.1. OSCCAL - The Oscillator Calibration Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: OSCCAL

Offset: 0x31
Reset: 0x00
Property:
7 6 5 4 3 2 1 0
CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CALO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Bits 7:0 — CALn: Oscillator Calibration Value [n = 7:0]

Writing the calibration byte to this address will trim the Internal Oscillator to remove process variations
from the Oscillator frequency. During Reset, the 1MHz calibration value which is located in the signature
row High byte (address 0x00) is automatically loaded into the OSCCAL Register. If the internal RC is
used at other frequencies, the calibration values must be loaded manually. This can be done by first
reading the signature row by a programmer, and then store the calibration values in the Flash or
EEPROM. Then the value can be read by software and loaded into the OSCCAL Register. When
OSCCAL is zero, the lowest available frequency is chosen. Writing non-zero values to this register will
increase the frequency of the Internal Oscillator. Writing OxFF to the register gives the highest available
frequency. The calibrated Oscillator is used to time EEPROM and Flash access. If EEPROM or Flash is
written, do not calibrate to more than 10% above the nominal frequency. Otherwise, the EEPROM or
Flash write may fail. Note that the Oscillator is intended for calibration to 1.0, 2.0, 4.0, or 8.0MHz. Tuning
to other values is not guaranteed, as indicated in the following table.

Table 12-11. Internal RC Oscillator Frequency Range

OSCCAL Value | Min Frequency in Percentage of Max Frequency in Percentage of
Nominal Frequency (%) Nominal Frequency (%)

0x00 50 100
Ox7F 75 150
OxFF 100 200
AtmeL Atmel ATmega32A [DATASHEET] 46

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

13. Power Management and Sleep Modes

13.1. Sleep Modes

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power.
The AVR provides various sleep modes allowing the user to tailor the power consumption to the
application’s requirements.

Figure Clock Distribution in section Clock Systems and their Distribution presents the different clock
systems in the ATmega32A, and their distribution. The figure is helpful in selecting an appropriate sleep
mode. The table below shows the different clock options and their wake-up sources.

Table 13-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes

- Active Clock Domains m Wake-up Sources

Sleep clkcpu | clkFLASH clkapc | clkasy | Main Timer TWIAddress | Timer2 | SPM/ ADC | Other
Mode Clock Osc. EEPROM 110
Source | Enabled Ready
Enabled
X X X X X X X X

Idle X x(2) X
ADC X X X x(2) x(3)
Noise
Reduction
Power- x(3) |x
down
Power- x(2) x(2) X3 x x(2)
save
;Standby(1 X x(3) |x
Extended x(2) X x(2) x(3) x x(2)
Standby!’
)
Note:

1. External Crystal or resonator selected as clock source.
2. If AS2 bitin ASSR is set.
3. Only INT2 or level interrupt INT1 and INTO.

To enter any of the six sleep modes, the SE bit in MCUCR must be written to logic one and a SLEEP
instruction must be executed. The SM2, SM1, and SMO bits in the MCUCR Register select which sleep
mode (Idle, ADC Noise Reduction, Power-down, Power-save, Standby, or Extended Standby) will be
activated by the SLEEP instruction. See Table 13-2 for a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then
halted for four cycles in addition to the start-up time, it executes the interrupt routine, and resumes
execution from the instruction following SLEEP. The contents of the Register File and SRAM are
unaltered when the device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up
and executes from the Reset Vector.

Related Links
Clock Systems and their Distribution on page 39

AtmeL Atmel ATmega32A [DATASHEET] 47

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Idle Mode

When the SM2:0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping
the CPU but allowing SPI, USART, Analog Comparator, ADC, Two-wire Serial Interface, Timer/Counters,
Watchdog, and the interrupt system to continue operating. This sleep mode basically halts clkcpy and
clkeLasH, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the
Timer Overflow and USART Transmit Complete interrupts. If wake-up from the Analog Comparator
interrupt is not required, the Analog Comparator can be powered down by setting the ACD bit in the
Analog Comparator Control and Status Register — ACSR. This will reduce power consumption in Idle
mode. If the ADC is enabled, a conversion starts automatically when this mode is entered.

ADC Noise Reduction Mode

When the SM2:0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC Noise
Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the Two-wire Serial
Interface address watch, Timer/Counter2 and the Watchdog to continue operating (if enabled). This sleep
mode basically halts clko, clkcpy, and clkgash, While allowing the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC
is enabled, a conversion starts automatically when this mode is entered. Apart form the ADC Conversion
Complete interrupt, only an External Reset, a Watchdog Reset, a Brown-out Reset, a Two-wire Serial
Interface address match interrupt, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an
External level interrupt on INTO or INT1, or an external interrupt on INT2 can wake up the MCU from ADC
Noise Reduction mode.

Power-down Mode

When the SM2:0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-down mode.
In this mode, the External Oscillator is stopped, while the External Interrupts, the Two-wire Serial
Interface address watch, and the Watchdog continue operating (if enabled). Only an External Reset, a
Watchdog Reset, a Brownout Reset, a Two-wire Serial Interface address match interrupt, an External
Level Interrupt on INTO or INT1, or an External Interrupt on INT2 can wake up the MCU. This sleep mode
basically halts all generated clocks, allowing operation of asynchronous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level
must be held for some time to wake up the MCU. Refer to External Interrupts for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs until the
wake-up becomes effective. This allows the clock to restart and become stable after having been
stopped. The wake-up period is defined by the same CKSEL Fuses that define the Reset Time-out
period, as described in Clock Sources.

Related Links

External Interrupts on page 69

Clock Sources on page 40

Power-save Mode

When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-save mode.
This mode is identical to Power-down, with one exception:

AtmeL Atmel ATmega32A [DATASHEET] 48

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

13.8.1.

13.8.2.

« If Timer/Counter2 is clocked asynchronously, i.e. the AS2 bit in ASSR is set, Timer/Counter2 will
run during sleep. The device can wake up from either Timer Overflow or Output Compare event
from Timer/Counter?2 if the corresponding Timer/Counter2 interrupt enable bits are set in TIMSK,
and the global interrupt enable bit in SREG is set.

If the asynchronous timer is NOT clocked asynchronously, Power-down mode is recommended instead of
Power-save mode because the contents of the registers in the asynchronous timer should be considered
undefined after wake-up in Power-save mode if AS2 is 0.

This sleep mode basically halts all clocks except clkasy, allowing operation only of asynchronous
modules, including Timer/Counter?2 if clocked asynchronously.

Standby Mode

When the SM2:0 bits are 110 and an external crystal/resonator clock option is selected, the SLEEP
instruction makes the MCU enter Standby mode. This mode is identical to Power-down with the exception
that the Oscillator is kept running. From Standby mode, the device wakes up in 6 clock cycles.

Extended Standby Mode

When the SM2:0 bits are 111 and an external crystal/resonator clock option is selected, the SLEEP
instruction makes the MCU enter Extended Standby mode. This mode is identical to Power-save mode
with the exception that the Oscillator is kept running. From Extended Standby mode, the device wakes up
in six clock cycles.

Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep mode
should be selected so that as few as possible of the device’s functions are operating. All functions not
needed should be disabled. In particular, the following modules may need special consideration when
trying to achieve the lowest possible power consumption.

Analog-to-Digital Converter (ADC)

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled
before entering any sleep mode. When the ADC is turned off and on again, the next conversion will be an
extended conversion. Refer to Analog-to-Digital Converter for details on ADC operation.

Related Links
ADC - Analog to Digital Converter on page 258

Analog Comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering ADC
Noise Reduction mode, the Analog Comparator should be disabled. In the other sleep modes, the Analog
Comparator is automatically disabled. However, if the Analog Comparator is set up to use the Internal
Voltage Reference as input, the Analog Comparator should be disabled in all sleep modes. Otherwise,
the Internal Voltage Reference will be enabled, independent of sleep mode. Refer to Analog Comparator
for details on how to configure the Analog Comparator.

Related Links
AC - Analog Comparator on page 253

AtmeL Atmel ATmega32A [DATASHEET] 49

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

13.8.3.

13.8.4.

13.8.5.

13.8.6.

13.8.7.

Brown-out Detector

If the Brown-out Detector is not needed in the application, this module should be turned off. If the Brown-
out Detector is enabled by the BODEN Fuse, it will be enabled in all sleep modes, and hence, always
consume power. In the deeper sleep modes, this will contribute significantly to the total current
consumption. Refer to Brown-out Detection for details on how to configure the Brown-out Detector.

Related Links
Brown-out Detection on page 56

Internal Voltage Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detector, the Analog
Comparator or the ADC. If these modules are disabled as described in the sections above, the internal
voltage reference will be disabled and it will not be consuming power. When turned on again, the user
must allow the reference to start up before the output is used. If the reference is kept on in sleep mode,
the output can be used immediately. Refer to Internal Voltage Reference for details on the start-up time.

Related Links

Internal Voltage Reference on page 57

Watchdog Timer

If the Watchdog Timer is not needed in the application, this module should be turned off. If the Watchdog
Timer is enabled, it will be enabled in all sleep modes, and hence, always consume power. In the deeper
sleep modes, this will contribute significantly to the total current consumption. Refer to Watchdog Timer
for details on how to configure the Watchdog Timer.

Related Links
Watchdog Timer on page 57

Port Pins

When entering a sleep mode, all port pins should be configured to use minimum power. The most
important thing is then to ensure that no pins drive resistive loads. In sleep modes where the both the I/O
clock (clk;0) and the ADC clock (clkapc) are stopped, the input buffers of the device will be disabled. This
ensures that no power is consumed by the input logic when not needed. In some cases, the input logic is
needed for detecting wake-up conditions, and it will then be enabled. Refer to the section Digital Input
Enable and Sleep Modes for details on which pins are enabled. If the input buffer is enabled and the input
signal is left floating or have an analog signal level close to V¢/2, the input buffer will use excessive
power.

Related Links
Digital Input Enable and Sleep Modes on page 78

JTAG Interface and On-chip Debug System

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enter Power down or Power
save sleep mode, the main clock source remains enabled. In these sleep modes, this will contribute
significantly to the total current consumption. There are three alternative ways to avoid this:

. Disable OCDEN Fuse.
. Disable JTAGEN Fuse.
e Write one to the JTD bit in MCUCSR.

The TDO pin is left floating when the JTAG interface is enabled while the JTAG TAP controller is not
shifting data. If the hardware connected to the TDO pin does not pull up the logic level, power
consumption will increase. Note that the TDI pin for the next device in the scan chain contains a pull-up

AtmeL Atmel ATmega32A [DATASHEET] 50

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

that avoids this problem. Writing the JTD bit in the MCUCSR register to one or leaving the JTAG fuse
unprogrammed disables the JTAG interface.

13.9. Register Description

AtmeL Atmel ATmega32A [DATASHEET] 51

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

13.9.1. MCUCR - MCU Control Register
The MCU Control Register contains control bits for power management.

When using the 1/O specific commands IN and OUT, the 1/0 addresses 0x00 - Ox3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: MCUCR

Offset: 0x35

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x55

Bit 7 6 5 4 3 2 1 0
SE SM2 SMA1 SMO
Access R/W R/W R/W R/W
Reset 0 0 0 0

Bit 7 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s purpose,
it is recommended to set the Sleep Enable (SE) bit to one just before the execution of the SLEEP
instruction and to clear it immediately after waking up.

Bits 6:4 — SMn: Sleep Mode n Select Bits [n = 2:0]
These bits select between the six available sleep modes as shown in the table.

Table 13-2. Sleep Mode Select

0

0 0 Idle

0 0 1 ADC Noise Reduction
0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby'")

1 1 1 Extended Standby (")

Note: 1. Standby mode is only available with external crystals or resonators.

AtmeL Atmel ATmega32A [DATASHEET] 52

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

14.1.

14.2.

System Control and Reset

Resetting the AVR

During Reset, all /0O Registers are set to their initial values, and the program starts execution from the
Reset Vector. The instruction placed at the Reset Vector must be a JMP — absolute jump — instruction to
the reset handling routine. If the program never enables an interrupt source, the Interrupt Vectors are not
used, and regular program code can be placed at these locations. This is also the case if the Reset
Vector is in the Application section while the Interrupt Vectors are in the boot section or vice versa. The
circuit diagram in the following section shows the Reset Logic. The Table in System and Reset
Characteristics defines the electrical parameters of the reset circuitry.

The 1/0 ports of the AVR are immediately reset to their initial state when a reset source goes active. This
does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal reset. This
allows the power to reach a stable level before normal operation starts. The time-out period of the delay
counter is defined by the user through the CKSEL Fuses. The different selections for the delay period are
presented in Clock Sources.

Related Links
System and Reset Characteristics on page 363
Clock Sources on page 40

Reset Sources
The ATmega32A has five sources of Reset:

+ Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset threshold
(Veor).

+ External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the
minimum pulse length.

* Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is
enabled.

* Brown-out Reset. The MCU is reset when the supply voltage V¢ is below the Brown-out Reset
threshold (VgoT) and the Brown-out Detector is enabled.

« JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one of the
scan chains of the JTAG system. Refer to the section IEEE 1149.1 (JTAG) Boundary-scan for
details.

AtmeL Atmel ATmega32A [DATASHEET] 53

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 14-1. Reset Logic

VCC

A

DATA BUS

A 4

A

MCU Control and Status
Register MCUCSR)

3
22

Y

Power-On Reset

Circuit

EXT
WDRF

BODEN

Al

BODLEVEL

Pull-up Resistor

Brown-Out
Reset Circuit

SPIKE
| FILTER

Reset Circuit

JTRF

JTAG Reset
Register

Watchdog
Timer

Related Links

IEEE 1149.1 (JTAG) Boundary-scan on page 287

Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level is
defined in the table in System and Reset Characteristics. The POR is activated whenever V¢ is below
the detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to detect a

failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the Power-on
Reset threshold voltage invokes the delay counter, which determines how long the device is kept in
RESET after V¢ rise. The RESET signal is activated again, without any delay, when V¢ decreases

below the detection level.

Atmel

A

Watchdog
Oscillator

Clock
Generator

CKSEL[3:0]
SUTI[1:0]

Delay Counters

A

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

INTERNAL RESET

COUNTER RESET

Figure 14-2. MCU Start-up, RESET Tied to V¢

A VPOT
Voo ——

1
1
1
:
1
v
RESET J RST

TIME-OUT < ‘rout >

INTERNAL
RESET

Figure 14-3. Figure: MCU Start-up, RESET Extended Externally

1
A VPOT
Ve¢ ——

| \
1 1
1 1
A
RESET ' o RsT
| |
1 1
1 1
I < —>
TIME-OUT | | frour
| |
1 1
1 1
1 1
INTERNAL |
RESET :

Related Links
System and Reset Characteristics on page 363

14.2.2. External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the minimum
pulse width (see table in System and Reset Characteristics) will generate a reset, even if the clock is not
running. Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the
Reset Threshold Voltage — Vgst On its positive edge, the delay counter starts the MCU after the time-out
period troyT has expired.

Figure 14-4. External Reset During Operation

Vee
RESET | |
1 1
1 1
1 1
1 1
: <— trour —
TIME-OUT : 1
1
1
1
|
INTERNAL
RESET

Related Links
System and Reset Characteristics on page 363

AtmeL Atmel ATmega32A [DATASHEET] 55

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

14.2.3. Brown-out Detection
ATmega32A has an On-chip Brown-out Detection (BOD) circuit for monitoring the V¢ level during
operation by comparing it to a fixed trigger level. The trigger level for the BOD can be selected by the fuse
BODLEVEL to be 2.7V (BODLEVEL unprogrammed), or 4.0V (BODLEVEL programmed). The trigger
level has a hysteresis to ensure spike free Brown-out Detection. The hysteresis on the detection level
should be interpreted as VBOT+ = VBOT + VHYST/2 and VBOT— = VBOT - VHYST/Z-
The BOD circuit can be enabled/disabled by the fuse BODEN. When the BOD is enabled (BODEN
programmed), and V¢ decreases to a value below the trigger level (Vgor. in the figure below), the
Brown-out Reset is immediately activated. When V¢ increases above the trigger level (VgoT+ in the
figure below), the delay counter starts the MCU after the time-out period troyt has expired.
The BOD circuit will only detect a drop in V¢ if the voltage stays below the trigger level for longer than
tsop given in the table in System and Reset Characteristics.
Figure 14-5. Brown-out Reset During Operation
Vee
RESET ; ;
TIME-OUT 1 f‘ trout
INTERNAL | i
RESET ! \ I—
Related Links
System and Reset Characteristics on page 363
14.2.4. Watchdog Reset
When the Watchdog times out, it will generate a short reset pulse of 1 CK cycle duration. On the falling
edge of this pulse, the delay timer starts counting the time-out period troyt. Refer to Watchdog Timer for
details on operation of the Watchdog Timer.
Figure 14-6. Watchdog Reset During Operation
VCC
RESET
—>! l«— 1 CK Cycle
WDT
TIME-OUT |'|
RESET | trour —]
TIME-OUT |
INTERNAL
RESET
AtmeL Atmel ATmega32A [DATASHEET] 56

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

14.3.

14.3.1.

14.4.

Internal Voltage Reference

ATmega32A features an internal bandgap reference. This reference is used for Brown-out Detection, and
it can be used as an input to the Analog Comparator or the ADC. The 2.56V reference to the ADC is
generated from the internal bandgap reference.

Voltage Reference Enable Signals and Start-up Time

The voltage reference has a start-up time that may influence the way it should be used. The start-up time
is given in the table in System and Reset Characteristics. To save power, the reference is not always
turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODEN Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the ACBG bit in
ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user must
always allow the reference to start up before the output from the Analog Comparator or ADC is used. To
reduce power consumption in Power-down mode, the user can avoid the three conditions above to
ensure that the reference is turned off before entering Power-down mode.

Related Links
System and Reset Characteristics on page 363

Watchdog Timer

The Watchdog Timer is clocked from a separate On-chip Oscillator which runs at 1MHz. This is the typical
value at V¢ = 5V. See characterization data for typical values at other V¢ levels. By controlling the
Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as shown in the figure below.
The WDR — Watchdog Reset — instruction resets the Watchdog Timer. The Watchdog Timer is also reset
when it is disabled and when a Chip Reset occurs. Eight different clock cycle periods can be selected to
determine the reset period. If the reset period expires without another Watchdog Reset, the ATmega32A
resets and executes from the Reset Vector. For timing details on the Watchdog Reset, refer to the
Watchdog Reset.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be followed when
the Watchdog is disabled. Refer to the description of the Watchdog Timer Control Register for details.

AtmeL Atmel ATmega32A [DATASHEET] 57

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 14-7. Watchdog Timer

WATCHDOG
OSCILLATOR

WATCHDOG
RESET

WATCHDOG
PRESCALER

0OSC/16K

0OSC/32K
OSC/64K
0OSC/128K
0OSC/256K
OSC/512K
0SC/1024K
0SC/2048K

WDPO
WDP1

Y

WDP2

)

WDE

[

Related Links
Watchdog Reset on page 56

14.5. Register Description

Atmel

MCU RESET

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

58

14.5.1. MCUCSR - MCU Control and Status Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

The MCU Control and Status Register provides information on which reset source caused an MCU Reset.

Name: MCUCSR

Offset: 0x34

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x54

Bit 7 6 5 4 3 2 1 0
JTRF WDRF BORF EXTRF PORF
Access R/W R/W R/W R/W R/W
Reset -

Bit 4 — JTRF: JTAG Reset Flag
This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by the JTAG
instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic zero to the flag.

Bit 3 - WDRF: Watchdog Reset Flag
This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero
to the flag.

Bit 2 - BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero
to the flag.

Bit 1 — EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a logic zero
to the flag.

Bit 0 — PORF: Power-on Reset Flag

This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag. To make
use of the Reset Flags to identify a reset condition, the user should read and then reset the MCUCSR as
early as possible in the program. If the register is cleared before another reset occurs, the source of the
reset can be found by examining the Reset Flags.

AtmeL Atmel ATmega32A [DATASHEET] 59

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

14.5.2. WDTCR - Watchdog Timer Control Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
Name: WDTCR
Offset: 0x21
Reset: 0x00
Property: When addressing I/O Registers as data space the offset address is 0x41
Bit 7 6 5 4 3 2 1 0
WDTOE WDE WDP2 WDP1 WDPO
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0
Bit 4 - WDTOE: Watchdog Turn-off Enable
This bit must be set when the WDE bit is written to logic zero. Otherwise, the Watchdog will not be
disabled. Once written to one, hardware will clear this bit after four clock cycles. Refer to the description
of the WDE bit for a Watchdog disable procedure.
Bit 3 - WDE: Watchdog Enable
When the WDE is written to logic one, the Watchdog Timer is enabled, and if the WDE is written to logic
zero, the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE bit has logic level
one. To disable an enabled Watchdog Timer, the following procedure must be followed:
1. In the same operation, write a logic one to WDTOE and WDE. A logic one must be written to WDE
even though it is set to one before the disable operation starts.
2. Within the next four clock cycles, write a logic 0 to WDE. This disables the Watchdog.
Bits 2:0 —- WDPn: Watchdog Timer Prescaler 2, 1, and 0 [n = 2:0]
The WDP2, WDP1, and WDPO bits determine the Watchdog Timer prescaling when the Watchdog Timer
is enabled. The different prescaling values and their corresponding Timeout Periods are shown in the
table below.
Table 14-1. Watchdog Timer Prescale Select
Number of WDT Oscillator | Typical Typical
Time-out at | Time-out at
Vcc = 3.0V Vcc = 5.0V
0 0 0 16K (16,384) 17.1ms 16.3ms
0 0 1 32K (32,768) 34.3ms 32.5ms
0 1 0 64K (65,536) 68.5ms 65ms
0 1 1 128K (131,072) 0.14s 0.13s
1 0 0 256K (262,144) 0.27s 0.26s
1 0 1 512K (524,288) 0.55s 0.52s
1 1 0 1,024K (1,048,576) 1.1s 1.0s
1 1 1 2,048K (2,097,152) 2.2s 2.1s
AtmeL Atmel ATmega32A [DATASHEET] 60

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

The following code example shows one assembly and one C function for turning off the WDT. The
example assumes that interrupts are controlled (for example by disabling interrupts globally) so that no
interrupts will occur during execution of these functions.

Assembly Code Example

WDT_off:
; Reset WDT
wdr
; Write logical one to WDTOE and WDE
in rl6, WDTCR
1di rl6, (1<<WDTOE) | (1<<WDE)
out WDTCR, rlé6
; Turn off WDT
1di rl6, (0<<WDE)
out WDTCR, rlé6
ret

C Code Example

void WDT off (void)

{
/* Reset WDT*/

_WDRC () ;
/* Write logical one to WDTOE and WDE */
WDTCR |= (1<<WDTOE) | (1<<WDE) ;

/* Turn off WDT */
WDTCR = 0x00;

AtmeL Atmel ATmega32A [DATASHEET]

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

61

15. Interrupts

This section describes the specifics of the interrupt handling performed by the ATmega32A. For a general
explanation of the AVR interrupt handling, refer to Reset and Interrupt Handling.

Related Links

Reset and Interrupt Handling on page 27

15.1. Interrupt Vectors in ATmega32A
Table 15-1. Reset and Interrupt Vectors

Vector No. | Program Interrupt Definition
Address

© 00 N o o b~ W DN

N = a A aAa a A «a a) a -
o © oo N o ok wuN =~ O

21

Note:
1.

Atmel

0x000""

0x002
0x004
0x006
0x008
0x00A
0x00C
0x00E
0x010
0x012
0x014
0x016
0x018
0x01A
0x01C
0x01E
0x020
0x022
0x024
0x026
0x028

RESET

INTO
INT1

INT2

TIMER2 COMP
TIMER2 OVF
TIMER1 CAPT
TIMER1 COMPA
TIMER1 COMPB
TIMER1 OVF
TIMERO COMP
TIMERO OVF
SPI, STC
USART, RXC
USART, UDRE
USART, TXC
ADC

EE_RDY
ANA_COMP
TWI

SPM_RDY

External Pin, Power-on Reset, Brown-out Reset, Watchdog
Reset, and JTAG AVR Reset

External Interrupt Request 0
External Interrupt Request 1
External Interrupt Request 2
Timer/Counter2 Compare Match
Timer/Counter2 Overflow
Timer/Counter1 Capture Event
Timer/Counter1 Compare Match A
Timer/Counter1 Compare Match B
Timer/Counter1 Overflow
Timer/Counter0 Compare Match
Timer/Counter0 Overflow

SPI Serial Transfer Complete
USART, Rx Complete

USART Data Register Empty
USART, Tx Complete

ADC Conversion Complete
EEPROM Ready

Analog Comparator

Two-wire Serial Interface

Store Program Memory Ready

When the BOOTRST fuse is programmed, the device will jump to the Boot Loader address at reset,
see Boot Loader Support — Read-While-Write Self-Programming.

Atmel ATmega32A [DATASHEET] 62

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

2. When the IVSEL bit in GICR is set, interrupt vectors will be moved to the start of the Boot Flash
section. The address of each interrupt vector will then be address in this table added to the start
address of the boot Flash section.

The next table shows Reset and interrupt vectors placement for the various combinations of BOOTRST

and IVSEL settings. If the program never enables an interrupt source, the interrupt vectors are not used,
and regular program code can be placed at these locations. This is also the case if the Reset Vector is in
the Application section while the interrupt vectors are in the Boot section or vice versa.

Table 15-2. Reset and Interrupt Vectors Placement

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in table Boot Size Configuration in the Boot Loader
Parameters section. For the BOOTRST Fuse “1” means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in ATmega32A

is:

address Labels Code Comments

5000 Jmp RESET ; Reset Handler

$002 jmp EXT INTO ; IRQO0 Handler

$004 jmp EXT INTI1 ; IRQ1 Handler

$006 jmp EXT INT2 ; IRQ2 Handler

$008 Jmp TIM2 COMP ; Timer2 Compare
Handler

S00A Jmp TIM2 OVF ; Timer2 Overflow
Handler

$00C jmp TIM1 CAPT ; Timerl Capture
Handler

S00E Jmp TIM1 COMPA ; Timerl CompareA
Handler

5010 Jmp TIM1 COMPB ; Timerl CompareB
Handler

$012 jmp TIM1 OVF ; Timerl Overflow
Handler

$014 Jmp TIMO COMP ; Timer(O Compare
Handler

5016 Jmp TIMO OVF ; Timer(O Overflow
Handler

AtmeL Atmel ATmega32A [DATASHEET] 63

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Comments

$018 Jmp SEINSIIE ; SPI Transfer
Complete Handler

SO1A Jjmp USART RXC ; USART RX
Complete Handler

S01cC Jjmp USARTO_ UDRE ; UDR Empty
Handler

$O1E jmp USARTO_ TXC ; USART TX
Complete Handler

$020 Jmp ADC ; ADC Conversion
Complete Handler

$022 Jjmp EE RDY ; EEPROM Ready
Handler

$024 jmp ANA COMP ; Analog

Comparator Handler

5026 Jmp TWI ; Two-wire Serial
Interface Handler

$028 jmp SPM _RDY ; Store Program
Memory Ready
Handler

$02A RESET: 1di rl6,high (RAMEND) ; Main program
start

$02B out SPH,rl6 ; Set Stack
Pointer to top of
RAM

$02C 1di rl6,low (RAMEND)

$02D out SPL, rl6

SO02E sei ; Enable
interrupts

SO02F <instr> XXX

When the BOOTRST fuse is unprogrammed, the Boot section size set to 4 Kbytes and the IVSEL bit in
the GICR Register is set before any interrupts are enabled, the most typical and general program setup
for the Reset and Interrupt Vector Addresses is:

AtmeL Atmel ATmega32A [DATASHEET] 64

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Adddress Comments

5000 RESET: 1di rl6,high (RAMEND) ; Main program
start

S001 out SPH,rlé6 ; Set stack
pointer to top of
RAM

$0002 1di rl16, low (RAMEND)

50003 out SPL,rl6

50004 seil ; Enable
interrupts

50005 <instr> XXX

.org $3802

$3802 Jmp EXT INTO ; IRQO0 Handler

$3804 jmp EXT INT1 ; IRQ1 Handler

$3828 Jmp SPM_RDY ; Store Program
Memory Ready
Handler

When the BOOTRST fuse is programmed and the Boot section size set to 4K bytes, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

.org $002

$002 Jmp EXT INTO ; IRQO Handler
5004 Jjmp EXT INTI1 ; IRQ1 Handler
$028 jmp SPM _RDY ; Store Program

Memory Handler

’

.org $3800

$3800 RESET: 1di rl6,high (RAMEND) ; Main program
start

$3801 out SPH,rl6 ; Set stack
pointer to top of
RAM

$3802 1di rl16, low (RAMEND)

$3803 out SPL,rl6

AtmeL Atmel ATmega32A [DATASHEET] 65

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Address

Comments

$3804

$3805

sei

<instr>

XXX

; Enable
interrupts

When the BOOTRST fuse is programmed, the Boot section size set to 4K bytes and the IVSEL bit in the
GICR Register is set before any interrupts are enabled, the most typical and general program setup for

the Reset and Interrupt Vector Addresses is:

Address

.org $3800

$3800
$3802
$3804

$3828

$382A

$382B

$382C

$382D
$382E

$S382F

Related Links
BTLDR - Boot Loader Support — Read-While-Write Self-Programming on page 311
ATmega32A Boot Loader Parameters on page 323

Labels

RESET:

Code

jmp
jmp

jmp

jmp

1di

out

1di

out

sei

<instr>

RESET
EXT INTO

EXT INT1

SPM_RDY

r16,high (RAMEND)

SPH,rl6

rl6, low (RAMEND)

SPL,rl6

XXX

15.1.1. Moving Interrupts Between Application and Boot Space
The General Interrupt Control Register controls the placement of the Interrupt Vector table.

15.2. Register Description

Atmel

Comments

; Reset handler
; IRQO0 Handler
; IRQ1 Handler
; Store Program

Memory Ready
Handler

; Main program
start

; Set Stack
Pointer to top of
RAM

; Enable
interrupts

Atmel ATmega32A [DATASHEET] 66
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

15.2.1. GICR - General Interrupt Control Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset

addresses.
Name: GICR
Offset: 0x3B
Reset: 0

Property: When addressing I/O Registers as data space the offset address is 0x5B

Bit 7 6 5 4 3 2 1 0
IVSEL IVCE
Access R/W R/W
Reset 0 0

Bit 1 — IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash memory.
When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot Loader section of
the Flash. The actual address of the start of the boot Flash section is determined by the BOOTSZ Fuses.
Refer to the section Boot Loader Support — Read-While-Write Self-Programming for details. To avoid
unintentional changes of Interrupt Vector tables, a special write procedure must be followed to change the
IVSEL bit:

1. Write the Interrupt Vector Change Enable (IVCE) bit to one.
2. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the
cycle IVCE is set, and they remain disabled until after the instruction following the write to IVSEL. If
IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status Register is
unaffected by the automatic disabling.

Note: 1. If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLBO2 is
programmed, interrupts are disabled while executing from the Application section. If Interrupt Vectors are
placed in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section Boot Loader Support — Read-While-Write
Self-Programming for details on Boot Lock Bits.

Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by hardware
four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable interrupts, as
explained in the IVSEL description above. See Code Example below.

Assembly Code Example

Move interrupts:
; Enable change of Interrupt Vectors
1di rl6, (1<<IVCE)
out GICR, rlé6
; Move interrupts to boot Flash section
1di rl6, (1<<IVSEL)
out GICR, rlé6
ret

AtmeL Atmel ATmega32A [DATASHEET] 67

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

C Code Example

void Move interrupts(void)

{
/* Enable change of Interrupt Vectors */

GICR = (1<<IVCE);
/* Move interrupts to boot Flash section */
GICR = (1<<IVSEL);

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

68

External Interrupts

The External Interrupts are triggered by the INTO, INT1, and INTZ2 pins. Observe that, if enabled, the
interrupts will trigger even if the INTO:2 pins are configured as outputs. This feature provides a way of
generating a software interrupt. The external interrupts can be triggered by a falling or rising edge or a
low level (INT2 is only an edge triggered interrupt). This is set up as indicated in the specification for the
MCU Control Register - MCUCR — and MCU Control and Status Register - MCUCSR. When the external
interrupt is enabled and is configured as level triggered (only INTO/INT1), the interrupt will trigger as long
as the pin is held low. Note that recognition of falling or rising edge interrupts on INTO and INT1 requires
the presence of an I/O clock, described in “Clock Systems and their Distribution” on page 25. Low level
interrupts on INTO/INT1 and the edge interrupt on INT2 are detected asynchronously. This implies that
these interrupts can be used for waking the part also from sleep modes other than Idle mode. The 1/0O
clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed level
must be held for some time to wake up the MCU. This makes the MCU less sensitive to noise. The
changed level is sampled twice by the Watchdog Oscillator clock. The period of the Watchdog Oscillator
is 1 us (nominal) at 5.0V and 25°C. The frequency of the Watchdog Oscillator is voltage dependent as
shown in “Electrical Characteristics” on page 296. The MCU will wake up if the input has the required
level during this sampling or if it is held until the end of the start-up time. The start-up time is defined by
the SUT fuses as described in “System Clock and Clock Options” on page 25. If the level is sampled
twice by the Watchdog Oscillator clock but disappears before the end of the startup time, the MCU will still
wake up, but no interrupt will be generated. The required level must be held long enough for the MCU to
complete the wake up to trigger the level interrupt.

Related Links

Clock Systems and their Distribution on page 39
Electrical Characteristics on page 359

System Clock and Clock Options on page 39

Register Description

AtmeL Atmel ATmega32A [DATASHEET] 69

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

16.1.1.

Access
Reset

MCUCR - MCU Control Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: MCUCR

Offset: 0x35

Reset: O

Property: When addressing I/O Registers as data space the offset address is 0x55

7 6 5 4 3 2 1 0
ISC11 ISC10 1ISCO01 ISC00
R/wW R/W R/wW R/W
0 0 0 0

Bits 3:2 — ISC1n: Interrupt Sense Control 1 Bit 1 and Bit 0 [n = 1:0]

The External Interrupt 1 is activated by the external pin INT1 if the SREG I-bit and the corresponding
interrupt mask in the GICR are set. The level and edges on the external INT1 pin that activate the
interrupt are defined in the next table. The value on the INT1 pin is sampled before detecting edges. If
edge or toggle interrupt is selected, pulses that last longer than one clock period will generate an
interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level interrupt is selected, the
low level must be held until the completion of the currently executing instruction to generate an interrupt.
Table 16-1. Interrupt 1 Sense Control

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.
1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.

Bits 1:0 — ISCOn: Interrupt Sense Control 0 Bit 1 and Bit 0 [n = 1:0]

The External Interrupt 0 is activated by the external pin INTO if the SREG I-flag and the corresponding
interrupt mask are set. The level and edges on the external INTO pin that activate the interrupt are defined
in the next table. The value on the INTO pin is sampled before detecting edges. If edge or toggle interrupt
is selected, pulses that last longer than one clock period will generate an interrupt. Shorter pulses are not
guaranteed to generate an interrupt. If low level interrupt is selected, the low level must be held until the
completion of the currently executing instruction to generate an interrupt.

Table 16-2. Interrupt 0 Sense Control

0 0 The low level of INTO generates an interrupt request.
0 1 Any logical change on INTO generates an interrupt request.
1 0 The falling edge of INTO generates an interrupt request.
1 1 The rising edge of INTO generates an interrupt request.
AtmeL Atmel ATmega32A [DATASHEET] 70

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

16.1.2. MCUCSR - MCU Control and Status Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
Name: MCUCSR
Offset: 0x34
Reset: 0
Property: When addressing I/O Registers as data space the offset address is 0x54
7 6 5 4 3 2 1 0
ISC2
Access R/W
Reset 0
Bit 6 — ISC2: ISC2: Interrupt Sense Control 2
The Asynchronous External Interrupt 2 is activated by the external pin INT2 if the SREG I-bit and the
corresponding interrupt mask in GICR are set. If ISC2 is written to zero, a falling edge on INT2 activates
the interrupt. If ISC2 is written to one, a rising edge on INT2 activates the interrupt. Edges on INT2 are
registered asynchronously. Pulses on INT2 wider than the minimum pulse width given in the table below
will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. When changing the
ISC2 bit, an interrupt can occur. Therefore, it is recommended to first disable INT2 by clearing its Interrupt
Enable bit in the GICR Register. Then, the ISC2 bit can be changed. Finally, the INT2 Interrupt Flag
should be cleared by writing a logical one to its Interrupt Flag bit (INTF2) in the GIFR Register before the
interrupt is re-enabled.
Table 16-3. Asynchronous External Interrupt Characteristics
Symbol | Paramter _ Gondiion _Min —_Tp __Max_Junis |
fINT Minimum 50 ns
pulse width
for
asynchronou
s external
interrupt
/Itm eL Atmel ATmega32A [DATASHEET] 71

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

16.1.3. GICR - General Interrupt Control Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
Name: GICR
Offset: 0x3B
Reset: O
Property: When addressing I/O Registers as data space the offset address is 0x5B

7 6 5 4 3 2 1 0
INT1 INTO INT2
Access R/W R/W R/W
Reset 0 0 0

Bit 7 — INT1: External Interrupt Request 1 Enable
When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin
interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the MCU general Control
Register (MCUCR) define whether the external interrupt is activated on rising and/or falling edge of the
INT1 pin or level sensed. Activity on the pin will cause an interrupt request even if INT1 is configured as
an output. The corresponding interrupt of External Interrupt Request 1 is executed from the INT1 Interrupt
Vector.
Bit 6 — INTO: External Interrupt Request 0 Enable
When the INTO bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin
interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISCO00) in the MCU general Control
Register (MCUCR) define whether the external interrupt is activated on rising and/or falling edge of the
INTO pin or level sensed. Activity on the pin will cause an interrupt request even if INTO is configured as
an output. The corresponding interrupt of External Interrupt Request 0 is executed from the INTO Interrupt
Vector.
Bit 5 — INT2: External Interrupt Request 2 Enable
When the INT2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin
interrupt is enabled. The Interrupt Sense Control2 bit (ISC2) in the MCU Control and Status Register
(MCUCSR) defines whether the External Interrupt is activated on rising or falling edge of the INT2 pin.
Activity on the pin will cause an interrupt request even if INT2 is configured as an output. The
corresponding interrupt of External Interrupt Request 2 is executed from the INT2 Interrupt Vector.

/Itm eL Atmel ATmega32A [DATASHEET] 72

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

16.1.4.

Access
Reset

GIFR - General Interrupt Flag Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When

addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: GIFR
Offset: O0x3A
Reset: 0

Property: When addressing I/O Registers as data space the offset address is 0x5A

7 6 5 4 3 2 1 0
INTF1 INTFO INTF2
R/W R/wW R/W
0 0 0

Bit 7 — INTF1: External Interrupt Flag 1

When an event on the INT1 pin triggers an interrupt request, INTF1 becomes set (one). If the I-bit in
SREG and the INT1 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing
a logical one to it. This flag is always cleared when INT1 is configured as a level interrupt.

Bit 6 — INTFO0: External Interrupt Flag 0

When an event on the INTO pin triggers an interrupt request, INTFO becomes set (one). If the I-bit in
SREG and the INTO bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing
a logical one to it. This flag is always cleared when INTO is configured as a level interrupt.

Bit 5 — INTF2: External Interrupt Flag 2

When an event on the INT2 pin triggers an interrupt request, INTF2 becomes set (one). If the I-bit in
SREG and the INT2 bit in GICR are set (one), the MCU will jump to the corresponding Interrupt Vector.
The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing
a logical one to it. Note that when entering some sleep modes with the INT2 interrupt disabled, the input
buffer on this pin will be disabled. This may cause a logic change in internal signals which will set the
INTF2 Flag. See Digital Input Enable and Sleep Modes for more information.

AtmeL Atmel ATmega32A [DATASHEET] 73

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

/0 Ports

Overview

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This
means that the direction of one port pin can be changed without unintentionally changing the direction of
any other pin with the SBI and CBI instructions. The same applies when changing drive value (if
configured as output) or enabling/disabling of pull-up resistors (if configured as input). Each output buffer
has symmetrical drive characteristics with both high sink and source capability. The pin driver is strong
enough to drive LED displays directly. All port pins have individually selectable pull-up resistors with a
supply-voltage invariant resistance. All /0O pins have protection diodes to both V¢ and Ground as
indicated in the following figure. Refer to Electrical Characteristics — TA = -40°C to 85°C for a complete
list of parameters.

Figure 17-1. 1/0 Pin Equivalent Schematic

|_

R
pu

Pxn

See Figure
"General Digital I/O" for
Details

oL

pin il:

All registers and bit references in this section are written in general form. A lower case “x” represents the
numbering letter for the port, and a lower case “n” represents the bit number. However, when using the

register or bit defines in a program, the precise form must be used (i.e., PORTB3 for bit 3 in Port B, here
documented generally as PORTxn). The physical I/0 Registers and bit locations are listed in Register

Description.

I
I
I
I
I
I
I
—a Logic
I
I
I
I
o .

Three 1/0 memory address locations are allocated for each port, one each for the Data Register —
PORTX, Data Direction Register — DDRx, and the Port Input Pins — PINx. The Port Input Pins I/O location
is read only, while the Data Register and the Data Direction Register are read/write. In addition, the Pull-
up Disable — PUD bit in SFIOR disables the pull-up function for all pins in all ports when set.

Using the 1/O port as General Digital 1/0O is described in Ports as General Digital /0. Most port pins are
multiplexed with alternate functions for the peripheral features on the device. How each alternate function
interferes with the port pin is described in Alternate Port Functions. Refer to the individual module
sections for a full description of the alternate functions.

Note that enabling the alternate function of some of the port pins does not affect the use of the other pins
in the port as general digital 1/0.

Related Links

AtmeL Atmel ATmega32A [DATASHEET] 74

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

17.2.1.

Electrical Characteristics on page 359

Ports as General Digital I/O

The ports are bi-directional 1/0 ports with optional internal pull-ups. The following figure shows a
functional description of one 1/0O-port pin, here generically called Pxn.

Figure 17-2. General Digital /0(")

Tjt»—o< (= A

Q D |
hl
DDxn
Qe
WDx

RESET

N

AAA
VVv

Pxn Q D

VA
DATA BUS

SLEEP e
1> P

SYNCHRONIZER

RPx

v

(.

clk o

WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL RRx: READ PORTx REGISTER
clk o 1/0 CLOCK RPx: READ PORTx PIN

WPx: WRITE PINx REGISTER

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk;,o, SLEEP,
and PUD are common to all ports

Configuring the Pin

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in Register
Description, the DDxn bits are accessed at the DDRx |/O address, the PORTxn bits at the PORTx I/O
address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn is
configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is activated.
To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to be configured as
an output pin. The port pins are tri-stated when reset condition becomes active, even if no clocks are
running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high
(one). If PORTxn is written logic zero when the pin is configured as an output pin, the port pin is driven
low (zero).

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn} = 0b11),
an intermediate state with either pull-up enabled ({DDxn, PORTxn} = 0b01) or output low ({DDxn,

AtmeL Atmel ATmega32A [DATASHEET] 75

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully acceptable, as a high-impedant
environment will not notice the difference between a strong high driver and a pull-up. If this is not the
case, the PUD bit in the SFIOR Register can be set to disable all pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user must use
either the tristate ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn} = 0b11) as an
intermediate step.

The table below summarizes the control signals for the pin value.

Table 17-1. Port Pin Configurations

PORTxn PUD (in Comment
SFIOR)

Input Tri-state (Hi-Z)
0 1 0 Input Yes Pxn will source current if
external pulled low.
0 1 1 Input No Tri-state (Hi-Z)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

17.2.2. Reading the Pin Value

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn
Register Bit. As shown in Figure 17-2, the PINxn Register bit and the preceding latch constitute a
synchronizer. This is needed to avoid metastability if the physical pin changes value near the edge of the
internal clock, but it also introduces a delay. The next figure shows a timing diagram of the
synchronization when reading an externally applied pin value. The maximum and minimum propagation
delays are denoted tyq max and tpq min respectively.

Figure 17-3. Synchronization when Reading an Externally Applied Pin value

SYSTEM CLK __| “ | | | [
INSTRUCTIONS —_ X xix X xkx X _mnnee X

SYNC LATCH v
PINxn
r17 0x00 X OXFE
tpd, max :

AT
v

tpd, min

Consider the clock period starting shortly after the first falling edge of the system clock. The latch is

closed when the clock is low, and goes transparent when the clock is high, as indicated by the shaded
region of the “SYNC LATCH?” signal. The signal value is latched when the system clock goes low. It is
clocked into the PINxn Register at the succeeding positive clock edge. As indicated by the two arrows

AtmeL Atmel ATmega32A [DATASHEET] 76

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

tod,max @nd tpg min, @ single signal transition on the pin will be delayed between 2 and 1-2 system clock
period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indicated in the
figure below. The out instruction sets the “SYNC LATCH?” signal at the positive edge of the clock. In this
case, the delay tp4 through the synchronizer is 1 system clock period.

Figure 17-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEMCLK __| | | | | | | |

rié

INSTRUCTIONS % out PORTX, r16 X nop X inr17, PINx X

SYNC LATCH

PINxn

r17

0x00

X oxFF

D Wttt

I A

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define the port
pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin values are read
back again, but as previously discussed, a nop instruction is included to be able to read back the value

recently assigned to some of the pins.

Assembly Code Example!")

; Define pull-ups and set outputs high

; Define directions for port pins

1di rlé, (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO)

1di rl7, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO)
out PORTB, rl6

out DDRB, rl7

; Insert nop for synchronization

nop

; Read port pins

in rlé6, PINB

C Code Example!")

unsigned char i;

/* Define pull-ups and set outputs high */
/* Define directions for port pins */

PORTB = (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDRBO) ;
/* Insert nop for synchronization*/

_NOP() ;

/* Read port pins */

i = PINB;

Atmel

Atmel ATmega32A [DATASHEET] 77
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

17.2.3.

17.2.4.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from pull-ups
are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and 3 as low and
redefining bits 0 and 1 as strong high drivers.

Digital Input Enable and Sleep Modes

As shown in figure Figure 17-2, the digital input signal can be clamped to ground at the input of the
Schmitt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in Power-
down mode, Power-save mode, and Standby mode to avoid high power consumption if some input
signals are left floating, or have an analog signal level close to V¢/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not
enabled, SLEEP is active also for these pins. SLEEP is also overridden by various other alternate
functions as described in Alternate Port Functions.

If a logic high level (“one”) is present on an Asynchronous External Interrupt pin configured as “Interrupt
on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt is not enabled, the
corresponding External Interrupt Flag will be set when resuming from the above mentioned sleep modes,
as the clamping in these sleep modes produces the requested logic change.

Unconnected Pins

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though
most of the digital inputs are disabled in the deep sleep modes as described above, floating inputs should
be avoided to reduce current consumption in all other modes where the digital inputs are enabled (Reset,
Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up. In this
case, the pull-up will be disabled during reset. If low power consumption during reset is important, it is
recommended to use an external pull-up or pull-down. Connecting unused pins directly to Ve or GND is
not recommended, since this may cause excessive currents if the pin is accidentally configured as an
output.

Alternate Port Functions

Most port pins have alternate functions in addition to being general digital 1/0s. The following figure
shows how the port pin control signals from the simplified Figure 17-2 can be overridden by alternate
functions. The overriding signals may not be present in all port pins, but the figure serves as a generic
description applicable to all port pins in the AVR microcontroller family.

AtmeL Atmel ATmega32A [DATASHEET] 78

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 17-5. Alternate Port Functions!

PUOExn A

- L PUOVxn
{ b PUD
DDOExn
::]_'— DDOVxn
>
1 Q D |
DDxn
Q.
WDx
PVOExn RESET
RDx
PVOVxn l\[
I g
w2
1)
Pxn 1 M
N\ L e <
PORTxn =
DIEOExn By é
WPx
_I—o<]— DIEOVxn RESET
1
RRx
Of——— SLEEP N
1~
SYNCHRONIZER
RPx
>
; clk y0
= » Dixn
@ AlOxn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE WDx: ‘WRITE DDRx
PUOVxn: Pxn PULL-UP OVERRIDE VALUE RDx: READ DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RRx: READ PORTx REGISTER
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RPx: READ PORTx PIN
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WPx: ‘WRITE PINx
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE clk, 1/0 CLOCK
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE DIxn: DIGITAL INPUT PIN n ON PORTx
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx
SLEEP: SLEEP CONTROL
PUD: PULLUP DISABLE

Note: 1. WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk;,o, SLEEP,
and PUD are common to all ports. All other signals are unique for each pin.

The following table summarizes the function of the overriding signals. The pin and port indexes from the
figure above are not shown in the succeeding tables. The overriding signals are generated internally in
the modules having the alternate function.

Table 17-2. Generic Description of Overriding Signals for Alternate Functions

PUOE Pull-up Override If this signal is set, the pull-up enable is controlled by the PUQV signal.
Enable If this signal is cleared, the pull-up is enabled when {DDxn, PORTxn,
PUD} = 0b010.
PUOV Pull-up Override Value If PUOE is set, the pull-up is enabled/disabled when PUOV is set/
cleared, regardless of the setting of the DDxn, PORTxn, and PUD
Register bits.
AtmeL Atmel ATmega32A [DATASHEET] 79

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

DDOE

DDOV

PVOE

PVOV

DIEOE

DIEOV

DI

AlO

17.3.1.

Data Direction
Override Enable

Data Direction
Override Value

Port Value Override
Enable

Port VValue Override
Value

Digital Input Enable
Override Enable

Digital Input Enable

Override Value

Digital Input

Analog Input/Output

If this signal is set, the Output Driver Enable is controlled by the DDOV
signal. If this signal is cleared, the Output driver is enabled by the DDxn
Register bit.

If DDOE is set, the Output Driver is enabled/disabled when DDOV is
set/cleared, regardless of the setting of the DDxn Register bit.

If this signal is set and the Output Driver is enabled, the port value is
controlled by the PVOV signal. If PVOE is cleared, and the Output
Driver is enabled, the port Value is controlled by the PORTxn Register
bit.

If PVOE is set, the port value is set to PVOV, regardless of the setting of
the PORTxn Register bit.

If this bit is set, the Digital Input Enable is controlled by the DIEOV
signal. If this signal is cleared, the Digital Input Enable is determined by
MCU state (Normal mode, sleep mode).

If DIEOE is set, the Digital Input is enabled/disabled when DIEQV is set/
cleared, regardless of the MCU state (Normal mode, sleep mode).

This is the Digital Input to alternate functions. In the figure, the signal is
connected to the output of the Schmitt Trigger but before the
synchronizer. Unless the Digital Input is used as a clock source, the
module with the alternate function will use its own synchronizer.

This is the Analog Input/output to/from alternate functions. The signal is
connected directly to the pad, and can be used bi-directionally.

The following subsections shortly describe the alternate functions for each port, and relate the overriding
signals to the alternate function. Refer to the alternate function description for further details.

Alternate Functions of Port A

Port A has an alternate function as analog input for the ADC as shown in the table below. If some Port A
pins are configured as outputs, it is essential that these do not switch when a conversion is in progress.
This might corrupt the result of the conversion.

Table 17-3. Port A Pins Alternate Functions

ADCY7 (ADC input channel 7)
ADC6 (ADC input channel 6)
ADC5 (ADC input channel 5)
ADC4 (ADC input channel 4)
ADC3 (ADC input channel 3)
ADC2 (ADC input channel 2)
ADC1 (ADC input channel 1)
ADCO (ADC input channel 0)

PA7
PAG
PAS
PA4
PA3
PA2
PA1
PAO

Atmel

Atmel ATmega32A [DATASHEET] 80

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

The two tables below relates the alternate functions of Port A to the overriding signals shown in the figure
in section Alternate Port Functions.

Table 17-4. Overriding Signals for Alternate Functions in PA7:PA4

Signal Name PA7/ADC7 PA6/ADC6 PA5/ADC5 PA4/ADCA4

PUCE

PUOV
DDOE
DDOV
PVOE
PVOV
DIEOE
DIEOV
DI

AlO

Table 17-5. Overriding Signals for Alternate Functions in PA3:PAQ

Signal Name PA3/ADC3 PA2/ADC2 PA1/ADC1 PAO/ADCO

PUCE
PUOV
DDOE
DDOV
PVOE
PVOV
DIEOE
DIEOV
D
AlO

o O o O o o o o

ADC7 INPUT

o O O O o o o o

ADC3 INPUT

17.3.2. Alternate Functions of Port B

The Port B pins with alternate functions are shown in the table below:

Table 17-6. Port B Pins Alternate Functions

Alternate Functions

PB7
PB6
PB5
PB4

Atmel

O O o O o o o o

ADCG6 INPUT

O O O O o o o o

ADC2 INPUT

SCK (SPI Bus Serial Clock)

MISO (SPI Bus Master Input/Slave Output)
MOSI (SPI Bus Master Output/Slave Input)

SS (SPI Slave Select Input)

O O o O o o o o

O O o O o o o o

ADCS5 INPUT ADC4 INPUT

O O O O o o o o

O O O o o o o o

ADC1 INPUT ADCO INPUT

Atmel ATmega32A [DATASHEET]

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

81

Alternate Functions

PB3 AIN1 (Analog Comparator Negative Input)
OCO (Timer/Counter0 Output Compare Match Output)

PB2 AINO (Analog Comparator Positive Input)
INT2 (External Interrupt 2 Input)

PB1 T1 (Timer/Counter1 External Counter Input)

PBO TO (Timer/CounterQ External Counter Input)

XCK (USART External Clock Input/Output)

The alternate pin configuration is as follows:
*SCK -Port B, Bit 7

SCK: Master Clock output, Slave Clock input pin for SPI. When the SPI is enabled as a Slave, this pin is
configured as an input regardless of the setting of DDB7. When the SPI is enabled as a Master, the data
direction of this pin is controlled by DDB7. When the pin is forced by the SPI to be an input, the pull-up
can still be controlled by the PORTBY bit.

* MISO - Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPl. When the SPI is enabled as a Master, this pin is
configured as an input regardless of the setting of DDB6. When the SPI is enabled as a Slave, the data
direction of this pin is controlled by DDB6. When the pin is forced by the SPI to be an input, the pull-up
can still be controlled by the PORTBG bit.

* MOSI - Port B, Bit 5

MOSI: SPI Master Data output, Slave Data input for SPI. When the SPI is enabled as a Slave, this pin is
configured as an input regardless of the setting of DDB5. When the SPI is enabled as a Master, the data
direction of this pin is controlled by DDB5. When the pin is forced by the SPI to be an input, the pull-up
can still be controlled by the PORTBS5 bit.

*SS - Port B, Bit 4

SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input regardless
of the setting of DDB4. As a Slave, the SPI is activated when this pin is driven low. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB4. When the pin is forced by the
SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

* AIN1/0CO0 - Port B, Bit 3

AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal pull-up
switched off to avoid the digital port function from interfering with the function of the analog comparator.

OCO0, Output Compare Match output: The PB3 pin can serve as an external output for the Timer/CounterQ
Compare Match. The PB3 pin has to be configured as an output (DDB3 set (one)) to serve this function.
The OCO pin is also the output pin for the PWM mode timer function.

* AINO/INT2 - Port B, Bit 2

AINO, Analog Comparator Positive input. Configure the port pin as input with the internal pull-up switched
off to avoid the digital port function from interfering with the function of the Analog Comparator.

INT2, External Interrupt Source 2: The PB2 pin can serve as an external interrupt source to the MCU.

*T1 - Port B, Bit 1

AtmeL Atmel ATmega32A [DATASHEET] 82

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

T1, Timer/Counter1 Counter Source.

* TO/XCK - Port B, Bit 0

TO, Timer/Counter0 Counter Source.

XCK, USART External Clock. The Data Direction Register (DDBO0) controls whether the clock is output
(DDBQO set) or input (DDBO cleared). The XCK pin is active only when the USART operates in

Synchronous mode.

The tables below relate the alternate functions of Port B to the overriding signals shown in the figure in
section Alternate Port Functions. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal,
while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.

Table 17-7. Overriding Signals for Alternate Functions in PB7:PB4

Signal PB7/SCK PB6/MISO PB5/MOSI PB4/SS
Name

PUCE SPE « MSTR
PUOV PORTB7 - PUD
DDOE SPE - MSTR

DDOV 0

PVOE SPE « MSTR
PVOV SCK OUTPUT

DIEOE 0
DIEOV 0
DI SCK INPUT
AlO =

SPE « MSTR
PORTB6 « PUD
SPE « MSTR

SPE « MSTR
SPI SLAVE OUTPUT

SPI MSTR INPUT

SPE « MSTR SPE + MSTR
PORTBS5 « PUD PORTB4 - PUD
SPE « MSTR SPE « MSTR

0 0

SPE « MSTR 0

SPI MSTR OUTPUT 0

0 0

0 0

SPI SLAVE INPUT SPISS

Table 17-8. Overriding Signals for Alternate Functions in PB3:PB0

PB3/0CO/AINA PB2/INT2/AINO PB1/T1 PBO/TO/XCK
Name

PUOCE
PUOV
DDOE
DDOV
PVOE
PVOV
DIEOE
DIEOV
D
AlO

Atmel

o o o o

OCO0 ENABLE
0OCO

0

0

AIN1 INPUT

o O o o o o

INT2 ENABLE
1

INT2 INPUT
AINO INPUT

O O O o o o o o

T1INPUT

0
0
0
0

UMSEL

XCK OUTPUT

0

0

XCK INPUT/TO INPUT

Atmel ATmega32A [DATASHEET] 83
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

17.3.3.

Alternate Functions of Port C

The Port C pins with alternate functions are shown in the table below. If the JTAG interface is enabled,
the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.

Table 17-9. Port C Pins Alternate Functions

Alternate Function

PC7 TOSC2 (Timer Oscillator Pin 2)

PC6 TOSC1 (Timer Oscillator Pin 1)

PC5 TDI (JTAG Test Data In)

PC4 TDO (JTAG Test Data Out)

PC3 TMS (JTAG Test Mode Select)

PC2 TCK (JTAG Test Clock)

PC1 SDA (Two-wire Serial Bus Data Input/Output Line)

PCO SCL (Two-wire Serial Bus Clock Line)
The alternate pin configuration is as follows:
*TOSC2 - Port C, Bit 7
TOSC2, Timer Oscillator pin 2: When the AS2 bit in ASSR is set (one) to enable asynchronous clocking
of Timer/Counter2, pin PC7 is disconnected from the port, and becomes the inverting output of the
Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this pin, and the pin can not be used
as an 1/O pin.
* TOSC1 - Port C, Bit 6
TOSCH1, Timer Oscillator pin 1: When the AS2 bit in ASSR is set (one) to enable asynchronous clocking
of Timer/Counter2, pin PC6 is disconnected from the port, and becomes the input of the inverting
Oscillator amplifier. In this mode, a Crystal Oscillator is connected to this pin, and the pin can not be used
as an /O pin.
* TDI - Port C, Bit 5
TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Register
(scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin.
* TDO - Port C, Bit 4
TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When the JTAG
interface is enabled, this pin can not be used as an I/O pin.
The TDO pin is tri-stated unless TAP states that shifts out data are entered.
* TMS - Port C, Bit 3
TMS, JTAG Test Mode Select: This pin is used for navigating through the TAP-controller state machine.
When the JTAG interface is enabled, this pin can not be used as an 1/O pin.
* TCK - Port C, Bit 2
TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is enabled, this
pin can not be used as an 1/O pin.
* SDA - Port C, Bit 1

AtmeL Atmel ATmega32A [DATASHEET] 84

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

SDA, Two-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the Two-wire
Serial Interface, pin PC1 is disconnected from the port and becomes the Serial Data 1/O pin for the Two-
wire Serial Interface. In this mode, there is a spike filter on the pin to suppress spikes shorter than 50 ns
on the input signal, and the pin is driven by an open drain driver with slew-rate limitation. When this pin is
used by the Two-wire Serial Interface, the pull-up can still be controlled by the PORTC1 bit.

*SCL - Port C, Bit0

SCL, Two-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the Two-wire
Serial Interface, pin PCO is disconnected from the port and becomes the Serial Clock 1/O pin for the Two-
wire Serial Interface. In this mode, there is a spike filter on the pin to suppress spikes shorter than 50 ns
on the input signal, and the pin is driven by an open drain driver with slew-rate limitation. When this pin is
used by the Two-wire Serial Interface, the pull-up can still be controlled by the PORTCO bit.

The tables below relate the alternate functions of Port C to the overriding signals shown in Alternate Port

Functions.

Table 17-10. Overriding Signals for Alternate Functions in PC7:PC4

PC7/TOSC2 PC6/TOSC1 PC5/TDI PC4/TDO
Name

PUOE
PUOV
DDOE
DDOV

PVOE
PVOV
DIEOE
DIEQV
DI

AlO

AS2

AS2

T/C2 OSC OUTPUT T/C2 OSC INPUT

JTAGEN JTAGEN

1 0

JTAGEN JTAGEN

0 SHIFT_IR +
SHIFT_DR

0 JTAGEN

0 TDO

JTAGEN JTAGEN

0 0

DI -

Table 17-11. Overriding Signals for Alternate Functions in PC3:PC0(")

Signal |PC3/TMS PC2/TCK PC1/SDA PCO0/SCL
Name

PUOE | JTAGEN
PUOV 1
DDOE | JTAGEN
DDOV 0
PVOE 0
PVOV 0
DIEOE | JTAGEN
Atmel

JTAGEN
1
JTAGEN
0
0
0
JTAGEN

TWEN TWEN
PORTC1 - PUD PORTCO - PUD
TWEN TWEN
SDA_OUT SCL_ouT
TWEN TWEN

0 0

0 0

Atmel ATmega32A [DATASHEET] 85

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Signal |[PC3/TMS PC2/TCK PC1/SDA PCO0/SCL
Name
0 0 0

DIEOV 0
DI - - - -
AlO ™S TCK SDA INPUT SCL INPUT

Note: 1. When enabled, the Two-wire Serial Interface enables slew-rate controls on the output pins PCO
and PC1. This is not shown in the figure. In addition, spike filters are connected between the AlIO outputs
shown in the port figure and the digital logic of the TWI module.

17.3.4. Alternate Functions of Port D
The Port D pins with alternate functions are shown in the table below:

Table 17-12. Port D Pins Alternate Functions

Alternate Function

PD7 OC2 (Timer/Counter2 Output Compare Match Output)
PD6 ICP1 (Timer/Counter1 Input Capture Pin)

PD5 OCA1A (Timer/Counter1 Output Compare A Match Output)
PD4 OC1B (Timer/Counter1 Output Compare B Match Output)
PD3 INT1 (External Interrupt 1 Input)

PD2 INTO (External Interrupt O Input)

PD1 TXD (USART Output Pin)

PDO RXD (USART Input Pin)

The alternate pin configuration is as follows:
*OC2 - Port D, Bit 7

0OC2, Timer/Counter2 Output Compare Match output: The PD7 pin can serve as an external output for the
Timer/Counter2 Output Compare. The pin has to be configured as an output (DDD7 set (one)) to serve
this function. The OC2 pin is also the output pin for the PWM mode timer function.

*ICP1 - Port D, Bit 6
ICP1 — Input Capture Pin: The PD6 pin can act as an Input Capture pin for Timer/Counter1.
* OC1A - Port D, Bit 5

OC1A, Output Compare Match A output: The PD5 pin can serve as an external output for the Timer/
Counter1 Output Compare A. The pin has to be configured as an output (DDD5 set (one)) to serve this
function. The OC1A pin is also the output pin for the PWM mode timer function.

* OC1B - Port D, Bit 4

OC1B, Output Compare Match B output: The PD4 pin can serve as an external output for the Timer/
Counter1 Output Compare B. The pin has to be configured as an output (DDD4 set (one)) to serve this
function. The OC1B pin is also the output pin for the PWM mode timer function.

*INT1 - Port D, Bit 3

AtmeL Atmel ATmega32A [DATASHEET] 86

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

INT1, External Interrupt Source 1: The PD3 pin can serve as an external interrupt source.

*INTO - Port D, Bit 2

INTO, External Interrupt Source 0: The PD2 pin can serve as an external interrupt source.
*TXD - Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is enabled, this pin is
configured as an output regardless of the value of DDD1.

* RXD - Port D, Bit 0

RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled this pin is
configured as an input regardless of the value of DDDO0. When the USART forces this pin to be an input,
the pull-up can still be controlled by the PORTDO bit.

The tables below relate the alternate functions of Port D to the overriding signals shown in the figure in
section Alternate Port Functions.

Table 17-13. Overriding Signals for Alternate Functions PD7:PD4

PD7/0C2 PD6/ICP1 PD5/0C1A PD4/0C1B
Name

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE OC2 ENABLE 0 OC1A ENABLE OC1B ENABLE
PVOV 0C2 0 OC1A OC1B

DIEOE 0 0 0 0

DIEOV 0 0 0 0

DI - ICP1 INPUT - -

AlO = - - -

Table 17-14. Overriding Signals for Alternate Functions in PD3:PD0

PD3/INT3/TXD1 PD2/INT2/RXD1 PD1/INT1/SDA PDO/INTO/SCL
Name

PUCE 0 0 TXEN RXEN

PUOV 0 0 0 PORTDO « PUD
DDOE 0 0 TXEN RXEN

DDOV 0 0 1 0

PVOE 0 0 TXEN 0

PVOV 0 0 TXD 0

DIEOE INT1 ENABLE INTO ENABLE 0 0

AtmeL Atmel ATmega32A [DATASHEET] 87

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Signal

PD3/INT3/TXD1

PD2/INT2/RXD1

PD1/INT1/SDA

PDO/INTO/SCL

Name

DIEOV 1 1 0 0

DI INT1 INPUT INTO INPUT - RXD
AlIO - - - -

17.4. Register Description

Atmel

Atmel ATmega32A [DATASHEET] 88
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

17.4.1.

Access
Reset

SFIOR - Special Function IO Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: SFIOR

Offset: 0x30

Reset: O

Property: When addressing I/O Registers as data space the offset address is 0x50

Bit 2 — PUD: Pull-up Disable
When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn
Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See Configuring the Pin for
more details about this feature.

AtmeL Atmel ATmega32A [DATASHEET] 89

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.2. PORTA - Port A Data Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: PORTA

Offset: O0x1B

Reset: O

Property: When addressing I/O Registers as data space the offset address is 0x3B

Bit 7 6 5 4 3 2 1 0
PORTA7 PORTAG PORTAS PORTA4 PORTA3 PORTA2 PORTA1 PORTAO
Access R/W RwW R/W R/W R/wW R/W RwW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 —- PORTAN: Port A Data Register [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 90

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.3. DDRA - Port A Data Direction Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: DDRA

Offset: Ox1A

Reset: O

Property: When addressing I/O Registers as data space the offset address is 0x3A

Bit 7 6 5 4 3 2 1 0
DDA7 DDAG6 DDAS DDA4 DDA3 DDA2 DDA1 DDAO
Access R/W RwW R/wW R/W R/wW R/W RwW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — DDAn: Port A Data Direction Register [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 91

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.4.

Access
Reset

PINA — Port A Input Pins Address

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: PINA
Offset: 0x19
Reset: 0

Property: When addressing I/O Registers as data space the offset address is 0x39

7 6 5 4 3 2 1 0
PINA7 PINAG PINAS PINA4 PINA3 PINA2 PINA1 PINAO
R R R R R R R R
0 0 0 0 0 0 0 0

Bits 7:0 — PINAN: Port A Input Pins Address [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 92

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.5. PORTB - The Port B Data Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: PORTB

Offset: 0x18

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x38

Bit 7 6 5 4 3 2 1 0
PORTB7 PORTB6 PORTBS PORTB4 PORTB3 PORTB2 PORTB1 PORTBO
Access R/W RwW R/W R/W R/wW R/W R/wW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - PORTBn: Port B Data [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 93

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.6. DDRB - The Port B Data Direction Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: DDRB

Offset: 0x17

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x37

Bit 7 6 5 4 3 2 1 0
DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO
Access R/W RwW R/W R/W R/wW R/W R/wW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — DDBn: Port B Data Direction [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 94

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.7. PINB - The Port B Input Pins Address

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset

addresses.
Name: PINB
Offset: 0x16
Reset: N/A

Property: When addressing I/O Registers as data space the offset address is 0x36

Bit 7 6 5 4 3 2 1 0
PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO

Access R R R R R R R R

Reset X X X X X X X X

Bits 7:0 — PINBn: Port B Input Pins Address [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 95

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.8. PORTC - The Port C Data Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: PORTC

Offset: 0x15

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x35

Bit 7 6 5 4 3 2 1 0
PORTC7 PORTCG6 PORTC5 PORTC4 PORTC3 PORTC2 PORTCA1 PORTCO
Access R/W R/wW R/W R/wW R/wW R/W R/wW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 —- PORTCn: Port C Data [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 96

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.9. DDRC - The Port C Data Direction Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: DDRC

Offset: 0x14

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x34

Bit 7 6 5 4 3 2 1 0
DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO
Access R/W RwW R/W R/W R/wW R/W R/wW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — DDCn: Port C Data Direction [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 97

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.10. PINC - The Port C Input Pins Address

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

In ATmega103 compatibility mode, DDRC and PINC Registers are initialized to being Push-Pull Zero
Output. The port pins assumes their initial value, even if the clock is not running. Note that the DDRC and
PINC Registers are available in ATmega103 compatibility mode, and should not be used for 100% back-
ward compatibility.

Name: PINC
Offset: 0x13
Reset: N/A

Property: When addressing I/O Registers as data space the offset address is 0x33

Bit 7 6 5 4 3 2 1 0
PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO

Access R R R R R R R R

Reset 0 X X X X X X X

Bits 7:0 — PINCn: Port C Input Pins Address [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 98

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.11. PORTD - The Port D Data Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: PORTD

Offset: 0x12

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x32

Bit 7 6 5 4 3 2 1 0
PORTD7 PORTDG6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO
Access R/W R/wW R/W R/wW R/wW R/W R/wW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 —- PORTDn: Port D Data [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 99

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.12. DDRD - The Port D Data Direction Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: DDRD

Offset: Ox11

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x31

Bit 7 6 5 4 3 2 1 0
DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO
Access R/W RwW R/W R/W R/wW R/W R/wW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — DDDn: Port D Data Direction [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 100

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

17.4.13. PIND - The Port D Input Pins Address

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset

addresses.
Name: PIND
Offset: 0x10
Reset: N/A

Property: When addressing I/O Registers as data space the offset address is 0x30

Bit 7 6 5 4 3 2 1 0
PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO

Access R R R R R R R R

Reset X X X X X X X X

Bits 7:0 — PINDn: Port D Input Pins Address [n = 7:0]

AtmeL Atmel ATmega32A [DATASHEET] 101

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

18. Timer/Counter0 and Timer/Counter1 Prescalers

18.1. Overview

Timer/Counte1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters can have
different prescaler settings. The description below applies to Timer/Counte1 and Timer/Counter0.

18.2. Internal Clock Source

The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This provides
the fastest operation, with a maximum Timer/Counter clock frequency equal to system clock frequency
(foLk o). Alternatively, one of four taps from the prescaler can be used as a clock source. The prescaled
clock has a frequency of either fCLK_I/O/Ss fCLK_I/O/64y fCLK_I/O/256s or fCLK_I/O/1024-

18.3. Prescaler Reset

The prescaler is free running (i.e., operates independently of the clock select logic of the Timer/Counter)
and it is shared by Timer/Counte1 and Timer/CounterQ. Since the prescaler is not affected by the Timer/
Counter’s clock select, the state of the prescaler will have implications for situations where a prescaled
clock is used. One example of prescaling artifacts occurs when the timer is enabled and clocked by the
prescaler (6 > CSn2:0 > 1). The number of system clock cycles from when the timer is enabled to the first
count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256,
or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execution.
However, care must be taken if the other Timer/Counter that shares the same prescaler also uses
prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is connected to.

18.4. External Clock Source

An external clock source applied to the T1/TO pin can be used as Timer/Counter clock (clkt4/clktg). The
T1/T0 pin is sampled once every system clock cycle by the pin synchronization logic. The synchronized
(sampled) signal is then passed through the edge detector. The figure below shows a functional
equivalent block diagram of the T1/T0 synchronization and edge detector logic. The registers are clocked
at the positive edge of the internal system clock (clk;,o). The latch is transparent in the high period of the
internal system clock.

The edge detector generates one clkt4/clktg pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 =
6) edge it detects.

Figure 18-1. T1/T0 Pin Sampling

il > A L] o R R
Select Logic)
—[|

Synchronization Edge Detector

AtmeL Atmel ATmega32A [DATASHEET] 102

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an
edge has been applied to the T1/T0 pin to the counter is updated.

Enabling and disabling of the clock input must be done when T1/T0O has been stable for at least one
system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated.

Each half period of the external clock applied must be longer than one system clock cycle to ensure
correct sampling. The external clock must be guaranteed to have less than half the system clock
frequency (fexicik < foik_110/2) given a 50/50% duty cycle. Since the edge detector uses sampling, the
maximum frequency of an external clock it can detect is half the sampling frequency (Nyquist sampling
theorem). However, due to variation of the system clock frequency and duty cycle caused by Oscillator
source (crystal, resonator, and capacitors) tolerances, it is recommended that maximum frequency of an
external clock source is less than g 1/0/2.5.

An external clock source can not be prescaled.

Figure 18-2. Prescaler for Timer/Counte1 and Timer/Counter0(")

clkio > 10-BIT T/C PRESCALER
Clear
O ¥ © <
PSR10 SRR
O X <
®)
OFF

Tn A' Synchronization

e ar e - - - - -

<
<
<
<
<
<
<«

CSn0
CSn1
CSn2

v

TIMER/COUNTERN CLOCK
SOURCE clk T,

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in figure T1/T0 Pin Sampling in
this section.

18.5. Register Description

AtmeL Atmel ATmega32A [DATASHEET] 103

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

18.5.1. SFIOR - Special Function IO Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
Name: SFIOR
Offset: 0x30
Reset: 0
Property: When addressing I/O Registers as data space the offset address is 0x50
7 6 5 4 3 2 1 0
PSR10
Access R/W
Reset 0
Bit 0 — PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0
When this bit is written to one, the Timer/Counter1 and Timer/Counter0 prescaler will be reset. The bit will
be cleared by hardware after the operation is performed. Writing a zero to this bit will have no effect. Note
that Timer/Counter1 and Timer/CounterQ share the same prescaler and a reset of this prescaler will affect
both timers. This bit will always be read as zero.
AtmeL Atmel ATmega32A [DATASHEET] 104

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

19.

16-bit Timer/Counter1

19.1. Features
* True 16-bit Design (i.e., allows 16-bit PWM)
* Two independent Output Compare Units
* Double Buffered Output Compare Registers
* One Input Capture Unit
* Input Capture Noise Canceler
e Clear Timer on Compare Match (Auto Reload)
+ Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Variable PWM Period
* Frequency Generator
« External Event Counter
* Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)
19.2. Overview
The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave
generation, and signal timing measurement. Most register and bit references in this section are written in
general form. A lower case “n” replaces the Timer/Counter number, and a lower case “x” replaces the
Output Compare unit channel. However, when using the register or bit defines in a program, the precise
form must be used i.e., TCNT1 for accessing Timer/Counter1 counter value and so on.
A simplified block diagram of the 16-bit Timer/Counter is shown in the following figure. For the actual
placement of I/O pins, refer to Pin Configurations. CPU accessible 1/0 Registers, including 1/O bits and
I/0O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the Register
Description.
AtmeL Atmel ATmega32A [DATASHEET] 105

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

19.2.1.

Figure 19-1. 16-bit Timer/Counter Block Diagram(")

Count TOVn
—

Clear (Int.Req.)

Control Logic

Direction clky, Clock Select

Edge
Y Detector ™ o
BOTTOM
Yy v ¥] (From Prescaler)
‘ A Timer/Counter
TCNTn | ,__l
- =0

IEIEE) ocna

r(lnl.Req.)
o | Waveform »| 0Cna

Generation

\J

:-I ;—l_—l
P OCRnA

Edge Noise
Detector Canceler
1 1 ICPn

1
: Fixed OCnB
%) 1 TOP (Int.Req.)
) ‘] Values
/@ = 1 | Waveform »{ocnB
< 4 1 Generation
= [}
< |
A OCRnB !
. 1 (From Analog
1 Comparator Ouput)
| ™ ICFn(IntReq)
i]
]
t
[}

TCCRnA | TCCRnB
i

_ y

\ D

Note: 1. Refer to Pin Configurations, table Port B Pins Alternate Functions in Alternate Functions of Port

B, and table Port D Pins Alternate Functions in Alternate Functions of Port D for Timer/Counter1 pin
placement and description.

Related Links
Pin Configurations on page 13
Alternate Functions of Port B on page 81

Alternate Functions of Port D on page 86

Registers

The Timer/Counter (TCNTn), Output Compare Registers (OCRnA/B), and Input Capture Register (ICRn)
are all 16-bit registers. Special procedures must be followed when accessing the 16-bit registers. These
procedures are described in the section Accessing 16-bit Registers. The Timer/Counter Control Registers
(TCCRnNA/B) are 8-bit registers and have no CPU access restrictions. Interrupt requests (abbreviated to
Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are
individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in
the figure since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T1
pin. The Clock Select logic block controls which clock source and edge the Timer/Counter uses to
increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The
output from the clock select logic is referred to as the timer clock (clkry).

The double buffered Output Compare Registers (OCRNA/B) are compared with the Timer/Counter value
at all time. The result of the compare can be used by the waveform generator to generate a PWM or
variable frequency output on the Output Compare Pin (OCnA/B). See Ouiput Compare Units. The
Compare Match event will also set the Compare Match Flag (OCFnA/B) which can be used to generate
an Output Compare interrupt request.

AtmeL Atmel ATmega32A [DATASHEET] 106

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

The Input Capture Register can capture the Timer/Counter value at a given external (edge triggered)
event on either the Input Capture Pin (ICPn) or on the Analog Comparator pins (see Analog Comparator).
The Input Capture unit includes a digital filtering unit (Noise Canceler) for reducing the chance of
capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either
the OCRNA Register, the ICRn Register, or by a set of fixed values. When using OCRnA as TOP value in
a PWM mode, the OCRNA Register can not be used for generating a PWM output. However, the TOP
value will in this case be double buffered allowing the TOP value to be changed in run time. If a fixed TOP
value is required, the ICRn Register can be used as an alternative, freeing the OCRNA to be used as
PWM output.

Related Links
AC - Analog Comparator on page 253

19.2.2. Definitions
The following definitions are used extensively throughout the document:
Table 19-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes OxFFFF (decimal 65535).

TOP The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, Ox01FF, or
0x03FF, or to the value stored in the OCRNA or ICRn Register. The assignment is dependent
of the mode of operation.

19.2.3. Compatibility
The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit AVR
Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version regarding:
« All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt Registers.
« Bitlocations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers.
* Interrupt Vectors.
The following control bits have changed name, but have same functionality and register location:
« PWM10 is changed to WGM10.
« PWM11 is changed to WGM11.
« CTC1 is changed to WGM12.
The following bits are added to the 16-bit Timer/Counter Control Registers:
« FOC1A and FOC1B are added to TCCR1A.
« WGM13 is added to TCCR1B.
The 16-bit Timer/Counter has improvements that will affect the compatibility in some special cases.
19.3. Accessing 16-bit Registers
The TCNTn, OCRNA/B, and ICRn are 16-bit registers that can be accessed by the AVR CPU via the 8-bit
data bus. A 16-bit register must be byte accessed using two read or write operations. The 16-bit timer has
a single 8-bit register for temporary storing of the High byte of the 16-bit access. The same temporary
register is shared between all 16-bit registers within the 16-bit timer. Accessing the Low byte triggers the
Atmel ATmega32A [DATASHEET] 107
me

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

16-bit read or write operation. When the Low byte of a 16-bit register is written by the CPU, the High byte
stored in the temporary register, and the Low byte written are both copied into the 16-bit register in the
same clock cycle. When the Low byte of a 16-bit register is read by the CPU, the High byte of the 16-bit
register is copied into the temporary register in the same clock cycle as the Low byte is read.

Not all 16-bit accesses uses the temporary register for the High byte. Reading the OCRnA/B 16-bit
registers does not involve using the temporary register.

To do a 16-bit write, the High byte must be written before the Low byte. For a 16-bit read, the Low byte
must be read before the High byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no interrupts
updates the temporary register. The same principle can be used directly for accessing the OCRnA/B and
ICRn Registers. Note that when using “C”, the compiler handles the 16-bit access.

Assembly Code Example!")

; Set TCNTn to O0x01FF

1di rl7,0x01

1di rl6, 0xFF

out TCNTnH, r17

out TCNTnL, rl6

; Read TCNTn into rl7:rlé6
in rl6, TCNTnL

in rl7, TCNTnH

C Code Example!")

unsigned int i;

/* Set TCNTn to OxOlFF */
TCNTn = Ox1FF;

/* Read TCNTn into i */

i = TCNTn;

Note: 1. See About Code Examples.
The assembly code example returns the TCNTn value in the r17:r16 Register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs
between the two instructions accessing the 16-bit register, and the interrupt code updates the temporary
register by accessing the same or any other of the 16-bit Timer Registers, then the result of the access
outside the interrupt will be corrupted. Therefore, when both the main code and the interrupt code update
the temporary register, the main code must disable the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNTn Register contents. Reading
any of the OCRNnA/B or ICRn Registers can be done by using the same principle.

Asesmbly Code Example!")

TIM16 ReadTCNTn:
; Save global interrupt flag
in rl8,SREG
; Disable interrupts
cli
; Read TCNTn into rl7:rl6
in rl6, TCNTnL
in rl7,TCNTnH
; Restore global interrupt flag
out SREG, rl8
ret

AtmeL Atmel ATmega32A [DATASHEET] 108

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

C Code Example!")

unsigned int TIM16_ReadTCNTn(void)
{

unsigned char sreg;

unsigned int 1i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNTn into i */

i = TCNTn;

/* Restore global interrupt flag */

SREG = sreg;

return i;

Note: 1. See About Code Examples.
The assembly code example returns the TCNTn value in the r17:r16 Register pair.

The following code examples show how to do an atomic write of the TCNTn Register contents. Writing
any of the OCRNnA/B or ICRn Registers can be done by using the same principle.

Assembly Code Example!")

TIM16 WriteTCNTn:
; Save global interrupt flag

in rl8, SREG

; Disable interrupts

cli

; Set TCNTn to rl7:rlé6

out TCNTnH, r17

out TCNTnL, rl6

; Restore global interrupt flag
out SREG, rl8

ret

C Code Example!")

void TIM16 WriteTCNTn(unsigned int 1)
{
unsigned char sreg;
unsigned int 1i;
/* Save global interrupt flag */
sreg = SREG;
/* Disable interrupts */
_CLI(O);
/* Set TCNTn to i */
TCNTn = 1i;
/* Restore global interrupt flag */
SREG = sreg;

Note: 1. See About Code Examples.

The assembly code example requires that the r17:r16 Register pair contains the value to be written to
TCNTn.

Related Links

About Code Examples on page 19

19.3.1. Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the High byte is the same for all registers written, then the
High byte only needs to be written once. However, note that the same rule of atomic operation described
previously also applies in this case.

AtmeL Atmel ATmega32A [DATASHEET] 109

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

19.4.

19.5.

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is
selected by the clock select logic which is controlled by the clock select (CSn2:0) bits located in the
Timer/Counter Control Register B (TCCRnB). For details on clock sources and prescaler, see Timer/
Counte1 and Timer/Counter0 Prescalers.

Related Links

Timer/Counter0 and Timer/Counter] Prescalers on page 102

Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. The
figure below shows a block diagram of the counter and its surroundings.

Figure 19-2. Counter Unit Block Diagram

< DATA BUS s-bit) >
t TOVn

(Int.Req.)

[TEMP by |

Clock Select
Count Edge

| TCNTnH (8-bit) | TCNTnL (8-bit) Clear clk Detector
Control Logic |«—=

(From Prescaler)
T TOP T BOTTOM

count Increment or decrement TCNTn by 1.

Direction

A A A

TCNTn (16-bit Counter)

Signal description (internal signals):

direction Select between increment and decrement.

clear Clear TCNTn (set all bits to zero).

clkty Timer/Counter clock.

TOP Signalize that TCNTn has reached maximum value.

BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit /O memory locations: counter high (TCNTnH) containing the
upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight bits. The TCNTnH
Register can only be indirectly accessed by the CPU. When the CPU does an access to the TCNTnH I/O
location, the CPU accesses the High byte temporary register (TEMP). The temporary register is updated
with the TCNTnH value when the TCNTnL is read, and TCNTnH is updated with the temporary register
value when TCNTnL is written. This allows the CPU to read or write the entire 16-bit counter value within
one clock cycle via the 8-bit data bus. It is important to notice that there are special cases of writing to the
TCNTn Register when the counter is counting that will give unpredictable results. The special cases are
described in the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each
timer clock (clkt,). The clkt, can be generated from an external or internal clock source, selected by the
clock select bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the timer is stopped. However,

AtmeL Atmel ATmega32A [DATASHEET] 110

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

19.6.

the TCNTn value can be accessed by the CPU, independent of whether clkt, is present or not. A CPU
write overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits (WGMn3:0)
located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB). There are close
connections between how the counter behaves (counts) and how waveforms are generated on the Output
Compare Outputs OCnx. For more details about advanced counting sequences and waveform
generation, see Modes of Operation.

The Timer/Counter Overflow (TOVn) flag is set according to the mode of operation selected by the
WGMN3:0 bits. TOVn can be used for generating a CPU interrupt.

Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give them a
timestamp indicating time of occurrence. The external signal indicating an event, or multiple events, can
be applied via the ICPn pin or alternatively, via the Analog Comparator unit. The time-stamps can then be
used to calculate frequency, duty-cycle, and other features of the signal applied. Alternatively the time-
stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram below. The elements of the block diagram that
are not directly a part of the Input Capture unit are gray shaded. The small “n” in register and bit names
indicates the Timer/Counter number.

Figure 19-3. Input Capture Unit Block Diagram
DATA BUS (8-bi
- t A (8-bit) >

[TEMP Bbin |

v

ICRnH(8-bit) [ICRaL(8-bi) | [TCNTaHbi) [TONTAL(8-bin

»| WRITE ICRn (16-bit Register) TCNThn (16-bit Counter)

TE |

ACO* ACIC* ICNC ICES

_ Analog | ¢ ¢

Comparator Noise Edge

Canceler Detector

+

P ICFn (Int.Req.)

ICPn >

When a change of the logic level (an event) occurs on the Input Capture Pin (ICPn), alternatively on the
Analog Comparator Output (ACO), and this change confirms to the setting of the edge detector, a capture
will be triggered. When a capture is triggered, the 16-bit value of the counter (TCNTn) is written to the
Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at the same system clock as the
TCNTn value is copied into ICRn Register. If enabled (TICIEn = 1), the Input Capture Flag generates an

AtmeL Atmel ATmega32A [DATASHEET] 111

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Input Capture interrupt. The ICFn Flag is automatically cleared when the interrupt is executed.
Alternatively the ICFn Flag can be cleared by software by writing a logical one to its 1/O bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the Low byte
(ICRnL) and then the High byte (ICRnH). When the Low byte is read the High byte is copied into the High
byte temporary register (TEMP). When the CPU reads the ICRnH 1/O location it will access the TEMP
Register.

The ICRn Register can only be written when using a Waveform Generation mode that utilizes the ICRn
Register for defining the counter’s TOP value. In these cases the Waveform Generation mode
(WGMnN3:0) bits must be set before the TOP value can be written to the ICRn Register. When writing the
ICRn Register the High byte must be written to the ICRnH 1/O location before the Low byte is written to
ICRnNL.

For more information on how to access the 16-bit registers refer to Accessing 16-bit Registers.

19.6.1. Input Capture Pin Source
The main trigger source for the Input Capture unit is the Input Capture Pin (ICPn). Timer/Counter 1 can
alternatively use the Analog Comparator Output as trigger source for the Input Capture unit. The Analog
Comparator is selected as trigger source by setting the Analog Comparator Input Capture (ACIC) bit in
the Analog Comparator Control and Status Register (ACSR). Be aware that changing trigger source can
trigger a capture. The Input Capture Flag must therefore be cleared after the change.
Both the Input Capture Pin (ICPn) and the Analog Comparator Output (ACO) inputs are sampled using
the same technique as for the Tn pin (see figure Tn Pin Sampling in section External Clock Source). The
edge detector is also identical. However, when the noise canceler is enabled, additional logic is inserted
before the edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Waveform
Generation mode that uses ICRn to define TOP.
An Input Capture can be triggered by software by controlling the port of the ICPn pin.
Related Links
External Clock Source on page 102

19.6.2. Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise
canceler input is monitored over four samples, and all four must be equal for changing the output that in
turn is used by the edge detector.
The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in Timer/Counter
Control Register B (TCCRnB). When enabled the noise canceler introduces additional four system clock
cycles of delay from a change applied to the input, to the update of the ICRn Register. The noise canceler
uses the system clock and is therefore not affected by the prescaler.

19.6.3. Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity for
handling the incoming events. The time between two events is critical. If the processor has not read the
captured value in the ICRn Register before the next event occurs, the ICRn will be overwritten with a new
value. In this case the result of the capture will be incorrect.
When using the Input Capture interrupt, the ICRn Register should be read as early in the interrupt handler
routine as possible. Even though the Input Capture interrupt has relatively high priority, the maximum
interrupt response time is dependent on the maximum number of clock cycles it takes to handle any of
the other interrupt requests.

/ItmeL Atmel ATmega32A [DATASHEET] 112

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is actively
changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after each
capture. Changing the edge sensing must be done as early as possible after the ICRn Register has been
read. After a change of the edge, the Input Capture Flag (ICFn) must be cleared by software (writing a
logical one to the I/O bit location). For measuring frequency only, the clearing of the ICFn Flag is not
required (if an interrupt handler is used).

19.7. Output Compare Units

The 16-bit comparator continuously compares TCNTn with the Output Compare Register (OCRnx). If
TCNT equals OCRnx the comparator signals a match. A match will set the Output Compare Flag
(OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Compare Flag generates an
Output Compare interrupt. The OCFnx Flag is automatically cleared when the interrupt is executed.
Alternatively the OCFnx Flag can be cleared by software by writing a logical one to its I/O bit location. The
waveform generator uses the match signal to generate an output according to operating mode set by the
Waveform Generation mode (WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and
BOTTOM signals are used by the waveform generator for handling the special cases of the extreme
values in some modes of operation (See Modes of Operation.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (i.e. counter
resolution). In addition to the counter resolution, the TOP value defines the period time for waveforms
generated by the waveform generator.

The figure below shows a block diagram of the Output Compare unit. The small “n” in the register and bit
names indicates the device number (n = n for Timer/Counter n), and the “x” indicates Output Compare
unit (A/B). The elements of the block diagram that are not directly a part of the Output Compare unit are
gray shaded.

AtmeL Atmel ATmega32A [DATASHEET] 113

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 19-4. Output Compare Unit, Block Diagram

DATA BUS 3-bit)

- -
A A A t

[TEMP 8bip |

! l ¥ ¥
OCRnxH Buf. (8-bit) | OCRnxL Buf. (8-bit) | [TeNTaH(sbiy | TCNTaL(8-bio

OCRnx Buffer (16-bit Register) TCNTRn (16-bit Counter)
I *
—V

OCRnxH (8-bit) | OCRnxL (8-bit) |

OCRnx (16-bit Register)

J L

I = (16-bit Comparator)

—® OCFnx (Int.Req.)

A

TOP —P
BOTTOM ——— P

Waveform Generator »| OCnx

1

WGMn3:0 COMnx1:0

The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation (PWM)
modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is
disabled. The double buffering synchronizes the update of the OCRnx Compare Register to either TOP or
BOTTOM of the counting sequence. The synchronization prevents the occurrence of odd-length, non-
symmetrical PWM pulses, thereby making the output glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double buffering is
enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is disabled the CPU
will access the OCRnx directly. The content of the OCR1x (Buffer or Compare) Register is only changed
by a write operation (the Timer/Counter does not update this register automatically as the TCNTn and
ICRnN Register). Therefore OCRnx is not read via the High byte temporary register (TEMP). However, it is
a good practice to read the Low byte first as when accessing other 16-bit registers. Writing the OCRnx
Registers must be done via the TEMP Register since the compare of all 16-bit is done continuously. The
High byte (OCRnxH) has to be written first. When the High byte I/O location is written by the CPU, the
TEMP Register will be updated by the value written. Then when the Low byte (OCRnxL) is written to the
lower eight bits, the High byte will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx
Compare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to Accessing 16-bit Registers.

19.7.1. Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced by writing a
one to the Force Output Compare (FOCnXx) bit. Forcing Compare Match will not set the OCFnx Flag or
reload/clear the timer, but the OCnx pin will be updated as if a real Compare Match had occurred (the
COMnNx1:0 bits settings define whether the OCnx pin is set, cleared or toggled).

AtmeL Atmel ATmega32A [DATASHEET] 114

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

19.7.2.

19.7.3.

19.8.

Compare Match Blocking by TCNTn Write

All CPU writes to the TCNTn Register will block any Compare Match that occurs in the next timer clock
cycle, even when the timer is stopped. This feature allows OCRnx to be initialized to the same value as
TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output Compare Unit

Since writing TCNTn in any mode of operation will block all compare matches for one timer clock cycle,
there are risks involved when changing TCNTn when using any of the Output Compare channels,
independent of whether the Timer/Counter is running or not. If the value written to TCNTn equals the
OCRnx value, the Compare Match will be missed, resulting in incorrect waveform generation. Do not
write the TCNTn equal to TOP in PWM modes with variable TOP values. The Compare Match for the
TOP will be ignored and the counter will continue to OxFFFF. Similarly, do not write the TCNTn value
equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register for the port pin to
output. The easiest way of setting the OCnx value is to use the Force Output Compare (FOCnx) strobe
bits in Normal mode. The OCnx Register keeps its value even when changing between Waveform
Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value. Changing the
COMnNx1:0 bits will take effect immediately.

Compare Match Output Unit

The Compare Output mode (COMnx1:0) bits have two functions. The waveform generator uses the
COMnNx1:0 bits for defining the Output Compare (OCnx) state at the next Compare Match. Secondly the
COMnx1:0 bits control the OCnx pin output source. The figure below shows a simplified schematic of the
logic affected by the COMnx1:0 bit setting. The I/0O Registers, 1/O bits, and 1/O pins in the figure are
shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected
by the COMnx1:0 bits are shown. When referring to the OCnx state, the reference is for the internal OCnx
Register, not the OCnx pin. If a System Reset occur, the OCnx Register is reset to “0”.

Figure 19-5. Compare Match Output Unit, Schematic

COMnx|1]

COMnx[0] Waveform
FOCnx Generator

1
OCnx
OCnx 0 Pin

DATA BUS

clk

/o

AtmeL Atmel ATmega32A [DATASHEET] 115

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

19.8.1.

19.9.

19.9.1.

The general I/O port function is overridden by the Output Compare (OCnx) from the waveform generator
if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or output) is still controlled
by the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OCnx pin
(DDR_OCnx) must be set as output before the OCnx value is visible on the pin. The port override function
is generally independent of the Waveform Generation mode, but there are some exceptions. Refer to
Table 19-2, Table 19-3 and Table 19-4 for details.

The design of the Output Compare Pin logic allows initialization of the OCnx state before the output is
enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of operation. See
Register Description.

The COMnx1:0 bits have no effect on the Input Capture unit.

Compare Output Mode and Waveform Generation

The waveform generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes. For all
modes, setting the COMnx1:0 = 0 tells the waveform generator that no action on the OCnx Register is to
be performed on the next Compare Match. For compare output actions in the non-PWM modes refer to
Table 19-2. For fast PWM mode refer to Table 19-3, and for phase correct and phase and frequency
correct PWM refer to Table 19-4.

A change of the COMnx1:0 bits state will have effect at the first Compare Match after the bits are written.
For nonPWM modes, the action can be forced to have immediate effect by using the FOCnx strobe bits.

Modes of Operation

The mode of operation (i.e., the behavior of the Timer/Counter and the Output Compare pins) is defined
by the combination of the Waveform Generation mode (WGMn3:0) and Compare Output mode
(COMnNx1:0) bits. The Compare Output mode bits do not affect the counting sequence, while the
Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM output generated
should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COMnx1:0 bits
control whether the output should be set, cleared or toggle at a Compare Match. See Compare Maich
Output Unit.

For detailed timing information refer to Timer/Counter Timing Diagrams.

Normal Mode

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting direction
is always up (incrementing), and no counter clear is performed. The counter simply overruns when it
passes its maximum 16-bit value (MAX = OxFFFF) and then restarts from the BOTTOM (0x0000). In
normal operation the Timer/Counter Overflow Flag (TOVn) will be set in the same timer clock cycle as the
TCNTn becomes zero. The TOVn Flag in this case behaves like a 17th bit, except that it is only set, not
cleared. However, combined with the timer overflow interrupt that automatically clears the TOVn Flag, the
timer resolution can be increased by software. There are no special cases to consider in the Normal
mode, a new counter value can be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum interval
between the external events must not exceed the resolution of the counter. If the interval between events
are too long, the timer overflow interrupt or the prescaler must be used to extend the resolution for the
capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the Output
Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of
the CPU time.

AtmeL Atmel ATmega32A [DATASHEET] 116

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

19.9.2.

19.9.3.

Atmel

Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRnA or ICRn Register are used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value
(TCNTn) matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 = 12). The OCRnA or ICRn
define the top value for the counter, hence also its resolution. This mode allows greater control of the
Compare Match output frequency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown below. The counter value (TCNTn) increases until a
Compare Match occurs with either OCRNnA or ICRn, and then counter (TCNTn) is cleared.

Figure 19-6. CTC Mode, Timing Diagram

o VV Vm

OCnA —
(Toggle)

OCnA Interrupt Flag Set
T or ICFn Interrupt Flag Set
A/ (Interrupt on TOP)

(COMNA[1:0] = Ox1)

Period I 1 I 2 I 3 I 4 I
An interrupt can be generated at each time the counter value reaches the TOP value by either using the
OCFnA or ICFn Flag according to the register used to define the TOP value. If the interrupt is enabled,
the interrupt handler routine can be used for updating the TOP value. However, changing the TOP to a
value close to BOTTOM when the counter is running with none or a low prescaler value must be done
with care since the CTC mode does not have the double buffering feature. If the new value written to
OCRNA or ICRn is lower than the current value of TCNTn, the counter will miss the Compare Match. The
counter will then have to count to its maximum value (OxFFFF) and wrap around starting at 0x0000 before
the Compare Match can occur. In many cases this feature is not desirable. An alternative will then be to
use the fast PWM mode using OCRNA for defining TOP (WGMn3:0 = 15) since the OCRNA then will be
double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical level on
each Compare Match by setting the Compare Output mode bits to toggle mode (COMnA1:0 = 1). The
OCnA value will not be visible on the port pin unless the data direction for the pin is set to output
(DDR_OCnA = 1). The waveform generated will have a maximum frequency of focna = foik_110/2 when
OCRnNA is set to zero (0x0000). The waveform frequency is defined by the following equation:

f _ faxiy0
0CnA =~ 27N - (1 + OCRnA)

N represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the Timer Counter TOVn Flag is set in the same timer clock cycle
that the counter counts from MAX to 0x0000.

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a high
frequency PWM waveform generation option. The fast PWM differs from the other PWM options by its
single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOTTOM. In non-
inverting Compare Output mode, the Output Compare (OCnx) is cleared on the Compare Match between
TCNTn and OCRnx, and set at BOTTOM. In inverting Compare Output mode output is set on Compare
Match and cleared at BOTTOM. Due to the singleslope operation, the operating frequency of the fast

Atmel ATmega32A [DATASHEET] 117

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

PWM mode can be twice as high as the phase correct and phase and frequency correct PWM modes that
use dual-slope operation. This high frequency makes the fast PWM mode well suited for power
regulation, rectification, and DAC applications. High frequency allows physically small sized external
components (coils, capacitors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or OCRnA.
The minimum resolution allowed is 2-bit (ICRn or OCRNA set to 0x0003), and the maximum resolution is
16-bit (ICRn or OCRNA set to MAX). The PWM resolution in bits can be calculated by using the following
equation:

R _ log(TOP+1)

In fast PWM mode the counter is incremented until the counter value matches either one of the fixed
values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the
value in OCRnA (WGMn3:0 = 15). The counter is then cleared at the following timer clock cycle. The
timing diagram for the fast PWM mode is shown in the figure below. The figure shows fast PWM mode
when OCRNA or ICRn is used to define TOP. The TCNTn value is in the timing diagram shown as a
histogram for illustrating the single-slope operation. The diagram includes non-inverted and inverted
PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare matches
between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a Compare Match occurs.

Figure 19-7. Fast PWM Mode, Timing Diagram

OCRnNx/TOP Update and
TOVn Interrupt Flag Set and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

-

A

-V

OCnx |_ —|
OCnx |_|_|_|_|_|_|_|_| |_| (COMNX[1:0] = 0x3)

Period |<—1 I 2 I 3 I 4 I5+el 7 I 8 I
The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition the
OCFnNA or ICFn Flag is set at the same timer clock cycle as TOVn is set when either OCRnA or ICRn is

used for defining the TOP value. If one of the interrupts are enabled, the interrupt handler routine can be
used for updating the TOP and compare values.

(COMNX[1:0] = 0x2)

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the
value of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a
Compare Match will never occur between the TCNTn and the OCRnx. Note that when using fixed TOP
values the unused bits are masked to zero when any of the OCRnx Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP value.
The ICRn Register is not double buffered. This means that if ICRn is changed to a low value when the
counter is running with none or a low prescaler value, there is a risk that the new ICRn value written is
lower than the current value of TCNTn. The result will then be that the counter will miss the Compare
Match at the TOP value. The counter will then have to count to the MAX value (OxFFFF) and wrap around
starting at 0x0000 before the Compare Match can occur. The OCRNA Register, however, is double
buffered. This feature allows the OCRNA I/O location to be written anytime. When the OCRNA 1/O location

AtmeL Atmel ATmega32A [DATASHEET] 118

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

19.9.4.

is written the value written will be put into the OCRnA Buffer Register. The OCRnA Compare Register will
then be updated with the value in the Buffer Register at the next timer clock cycle the TCNTn matches
TOP. The update is done at the same timer clock cycle as the TCNTn is cleared and the TOVn Flag is
set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using ICRn, the
OCRNA Register is free to be used for generating a PWM output on OCnA. However, if the base PWM
frequency is actively changed (by changing the TOP value), using the OCRnA as TOP is clearly a better
choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the
COMnNx1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COMnx1:0 to 3. Refer to table Table 19-3. The actual OCnx value will only be visible on the
port pin if the data direction for the port pin is set as output (DDR_OCnx). The PWM waveform is
generated by setting (or clearing) the OCnx Register at the Compare Match between OCRnx and TCNTn,
and clearing (or setting) the OCnx Register at the timer clock cycle the counter is cleared (changes from
TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ fclk_I/O
fOCnXPWM “ N-(1+TOP)

N represents the prescale divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM waveform
output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the output will be a narrow
spike for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP will result in a constant high or
low output (depending on the polarity of the output set by the COMnx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OCnA
to toggle its logical level on each Compare Match (COMnA1:0 = 1). This applies only if OCRnA is used to
define the TOP value (WGMn3:0 = 15). The waveform generated will have a maximum frequency of focna
= fak_110/2 when OCRNA is set to zero (0x0000). This feature is similar to the OCnA toggle in CTC mode,
except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode.

Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3, 10, or 11)
provides a high resolution phase correct PWM waveform generation option. The phase correct PWM
mode is, like the phase and frequency correct PWM mode, based on a dual-slope operation. The counter
counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting
Compare Output mode, the Output Compare (OCnx) is cleared on the Compare Match between TCNTn
and OCRnx while upcounting, and set on the Compare Match while downcounting. In inverting Output
Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation
frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM
modes, these modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined by either
ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRNA set to 0x0003), and the
maximum resolution is 16-bit (ICRn or OCRNA set to MAX). The PWM resolution in bits can be calculated
by using the following equation:

R _ log(TOP+1)
PCPWM = " |og(2)

AtmeL Atmel ATmega32A [DATASHEET] 119

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

In phase correct PWM mode the counter is incremented until the counter value matches either one of the
fixed values 0x00FF, 0xO1FF, or Ox03FF (WGMn3:0 = 1, 2, or 3), the value in ICRn (WGMn3:0 = 10), or
the value in OCRnA (WGMn3:0 = 11). The counter has then reached the TOP and changes the count
direction. The TCNTn value will be equal to TOP for one timer clock cycle. The timing diagram for the
phase correct PWM mode is shown in the figure below. The figure shows phase correct PWM mode when
OCRNA or ICRn is used to define TOP. The TCNTn value is in the timing diagram shown as a histogram
for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs.
The small horizontal line marks on the TCNTn slopes represent compare matches between OCRnx and
TCNTnN. The OCnx Interrupt Flag will be set when a Compare Match occurs.

Figure 19-8. Phase Correct PWM Mode, Timing Diagram

OCRNx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn ’ \/\\/

OCnx (COMNX[1:0]] = 0x2)
OCnx (COMNX[1:0] = 0x3)
Period I 1 I 2 I 3 I 4 I

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When either
OCRNA or ICRn is used for defining the TOP value, the OCnA or ICFn Flag is set accordingly at the same
timer clock cycle as the OCRnx Registers are updated with the double buffer value (at TOP). The
Interrupt Flags can be used to generate an interrupt each time the counter reaches the TOP or BOTTOM
value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the
value of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a
Compare Match will never occur between the TCNTn and the OCRnx. Note that when using fixed TOP
values, the unused bits are masked to zero when any of the OCRnx Registers are written. As the third
period shown in the timing diagram above illustrates, changing the TOP actively while the Timer/Counter
is running in the Phase Correct mode can result in an unsymmetrical output. The reason for this can be
found in the time of update of the OCRnx Register. Since the OCRnx update occurs at TOP, the PWM
period starts and ends at TOP. This implies that the length of the falling slope is determined by the
previous TOP value, while the length of the rising slope is determined by the new TOP value. When these
two values differ the two slopes of the period will differ in length. The difference in length gives the
unsymmetrical result on the output.

It is recommended to use the Phase and Frequency Correct mode instead of the Phase Correct mode
when changing the TOP value while the Timer/Counter is running. When using a static TOP value there
are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins.
Setting the COMnx1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be
generated by setting the COMnx1:0 to 3. Refer to Table 19-4. The actual OCnx value will only be visible

AtmeL Atmel ATmega32A [DATASHEET] 120

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

on the port pin if the data direction for the port pin is set as output (DDR_OCnx). The PWM waveform is
generated by setting (or clearing) the OCnx Register at the Compare Match between OCRnx and TCNTn
when the counter increments, and clearing (or setting) the OCnx Register at Compare Match between
OCRnx and TCNTn when the counter decrements. The PWM frequency for the output when using phase
correct PWM can be calculated by the following equation:

faxi/0
focnxpePwM = 3N TOP

N variable represents the prescale divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a PWM waveform
output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the output will be
continuously low and if set equal to TOP the output will be continuously high for non-inverted PWM mode.
For inverted PWM the output will have the opposite logic values.

If OCRNA is used to define the TOP value (WGMn3:0 = 11) and COMnA1:0 = 1, the OCnA output will
toggle with a 50% duty cycle.

19.9.5. Phase and Frequency Correct PWM Mode
The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM mode
(WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM waveform generation
option. The phase and frequency correct PWM mode is, like the phase correct PWM mode, based on a
dual-slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP
to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is cleared on the
Compare Match between TCNTn and OCRnx while upcounting, and set on the Compare Match while
downcounting. In inverting Compare Output mode, the operation is inverted. The dual-slope operation
gives a lower maximum operation frequency compared to the single-slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The main difference between the phase correct, and the phase and frequency correct PWM mode is the
time the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 19-8 and Figure 19-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICRn or
OCRnNA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the maximum
resolution is 16-bit (ICRn or OCRnNA set to MAX). The PWM resolution in bits can be calculated using the
following equation:

_ log(TOP+1)

In phase and frequency correct PWM mode the counter is incremented until the counter value matches
either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The counter has then
reached the TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer
clock cycle. The timing diagram for the phase correct and frequency correct PWM mode is shown on
timing diagram below. The figure shows phase and frequency correct PWM mode when OCRnNA or ICRn
is used to define TOP. The TCNTn value is in the timing diagram shown as a histogram for illustrating the
dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx
Interrupt Flag will be set when a Compare Match occurs.

AtmeL Atmel ATmega32A [DATASHEET] 121

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 19-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)

/\\//\

OCnx (COMNX[1:0] = 0x2)
OCnx (COMNX[1:0] = 0x3)
Period | 1 | 2 | 3 | 4 |

[g g | g

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx Registers
are updated with the double buffer value (at BOTTOM). When either OCRnA or ICRn is used for defining
the TOP value, the OCnA or ICFn Flag set when TCNTn has reached TOP. The Interrupt Flags can then
be used to generate an interrupt each time the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or equal to the
value of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a
Compare Match will never occur between the TCNTn and the OCRnx.

As the timing diagram above shows the output generated is, in contrast to the Phase Correct mode,
symmetrical in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using ICRn, the
OCRNA Register is free to be used for generating a PWM output on OCnA. However, if the base PWM
frequency is actively changed by changing the TOP value, using the OCRnA as TOP is clearly a better
choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on
the OCnx pins. Setting the COMnx1:0 bits to 2 will produce a non-inverted PWM and an inverted PWM
output can be generated by setting the COMnx1:0 to 3. Refer to Table 19-4. The actual OCnx value will
only be visible on the port pin if the data direction for the port pin is set as output (DDR_OCnx). The PWM
waveform is generated by setting (or clearing) the OCnx Register at the Compare Match between OCRnx
and TCNTn when the counter increments, and clearing (or setting) the OCnx Register at Compare Match
between OCRnx and TCNTn when the counter decrements. The PWM frequency for the output when
using phase and frequency correct PWM can be calculated by the following equation:

_ faxuyo
focnxprcPwM = 3N - TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM waveform
output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the output will be
continuously low and if set equal to TOP the output will be set to high for non-inverted PWM mode. For
inverted PWM the output will have the opposite logic values.

AtmeL Atmel ATmega32A [DATASHEET] 122

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

If OCRNA is used to define the TOP value (WGMn3:0 = 9) and COMnA1:0 = 1, the OCnA output will

toggle with a 50% duty cycle.

19.10. Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkt,) is therefore shown as a clock
enable signal in the following figures. The figures include information on when Interrupt Flags are set, and
when the OCRnx Register is updated with the OCRnx buffer value (only for modes utilizing double
buffering). The next figure shows a timing diagram for the setting of OCFnx.
Figure 19-10. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling
clk;,
clky,
(clk, /1)
TCNTn X OCRnx - 1 X OCRnx OCRnx + 1 X OCRnx + 2
OCRnx OCRnx Value
OCFnx
The next figure shows the same timing data, but with the prescaler enabled.
Figure 19-11. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (f._10/8)
o [[[UUUUUULUUTUTTDGUUUUUUL UL
clky,
(clk;,o/8)
TCNTn X OCRnx - 1 X OCRnx OCRnx + 1 X OCRnx + 2
OCRnx OCRnx Value
OCFnx
The next figure shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams will be
the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on. The same
renaming applies for modes that set the TOVn Flag at BOTTOM.
AtmeL Atmel ATmega32A [DATASHEET] 123

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 19-12. Timer/Counter Timing Diagram, no Prescaling.

clk

1/0

clk,,

(clk; /1)

TCNTn

(CTC and FPWM) _X TOP -1 TOP BOTTOM BOTTOM + 1

TCNTn

(PC and PFC PWM) _X TOP - 1 TOP TOP - 1 TOP - 2

TOVn (FPWM)
and ICF n (ifused
as TOP)

OCRnx

(Update at TOP) Old OCRnx Value New OCRnx Value

The next figure shows the same timing data, but with the prescaler enabled.

Figure 19-13. Timer/Counter Timing Diagram, with Prescaler (f_j0/8)

e« [JIUIUUOUGUUUUUUUgUuuuuuug Uit
(cclis]ff@ F F F F

TCNTn T
(CTCand FPWM) |

TOP -1 TOP BOTTOM BOTTOM + 1

TCNTn |
TOP - 1 - .
(PC and PFC PWM) _X 0 TOP TOP - 1 TOP -2

TOVn(FPWM)

and ICF n (if used
as TOP)

OCRnx

(Update at TOP) Old OCRnx Value New OCRnx Value

19.11. Register Description

AtmeL Atmel ATmega32A [DATASHEET] 124

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

19.11.1. TCCR1A - Timer/Counter1 Control Register A

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: TCCR1A

Offset: Ox2F

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x4F

7 6 5 4 3 2 1 0
COM1A1 COM1AQ COM1B1 COM1B0O FOC1A FOC1B WGM11 WGM10
R/W RwW R/wW R/W w W RwW R/W
0 0 0 0 0 0 0 0

Bits 7:6 — COM1An: Compare Output Mode for Channel A [n = 1:0]

Bits 5:4 —- COM1Bn: Compare Output Mode for Channel B [n = 1:0]

The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respectively)
behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A output overrides the normal
port functionality of the I/O pin it is connected to. If one or both of the COM1B1:0 bit are written to one,
the OC1B output overrides the normal port functionality of the I/O pin it is connected to. However, note
that the Data Direction Register (DDR) bit corresponding to the OC1A or OC1B pin must be set in order
to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1n1:0 bits is dependent of the
WGM13:0 bits setting. The table below shows the COM1n1:0 bit functionality when the WGM13:0 bits are
set to a Normal or a CTC mode (non-PWM).

Table 19-2. Compare Output Mode, non-PWM

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 Toggle OC1A/OC1B on Compare Match.

1 0 Clear OC1A/OC1B on Compare Match (Set output to low
level).

1 1 Set OC1A/OC1B on Compare Match (Set output to high
level).

The next table shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast PWM
mode.

AtmeL Atmel ATmega32A [DATASHEET] 125

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 19-3. Compare Output Mode, Fast PWM(")

COM1A1/ COM1A0/ Description
COM1B1 COM1B0
0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 WGM13:0 = 15: Toggle OC1A on Compare Match, OC1B
disconnected (normal port operation). For all other WGM1
settings, normal port operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on Compare Match, set OC1A/OC1B at
BOTTOM (non-inverting mode)
1 1 Set OC1A/OC1B on Compare Match, clear OC1A/OC1B at

BOTTOM (inverting mode)

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In this
case the compare match is ignored, but the set or clear is done at BOTTOM. Refer to Fast PWIM Mode
for details.

The table below shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase
correct or the phase and frequency correct, PWM mode.

Table 19-4. Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM(")

COM1A1/ COM1A0/ Description
COoM1B1 COM1B0

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 WGM13:0 = 9 or 14: Toggle OC1A on Compare Match, OC1B
disconnected (normal port operation). For all other WGM1 settings,
normal port operation, OC1A/OC1B disconnected.

1 0 Clear OC1A/OC1B on Compare Match when up-counting. Set
OC1A/OC1B on Compare Match when down-counting.

1 1 Set OC1A/OC1B on Compare Match when up-counting. Clear
OC1A/OC1B on Compare Match when down-counting.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. Refer
to Phase Correct PWM Mode for details.

Bit 3 — FOC1A: Force Output Compare for channel A

Bit 2 — FOC1B: Force Output Compare for channel B

The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode. However,
for ensuring compatibility with future devices, these bits must be set to zero when TCCR1A is written
when operating in a PWM mode. When writing a logical one to the FOC1A/FOC1B bit, an immediate
Compare Match is forced on the waveform generation unit. The OC1A/OC1B output is changed
according to its COM1x1:0 bits setting. Note that the FOC1A/FOC1B bits are implemented as strobes.
Therefore it is the value present in the COM1x1:0 bits that determine the effect of the forced compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on
Compare Match (CTC) mode using OCR1A as TOP.

The FOC1A/FOC1B bits are always read as zero.

AtmeL Atmel ATmega32A [DATASHEET] 126

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Bits 1:0 - WGM1n: Waveform Generation Mode [n = 1:0]

Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of waveform
generation to be used, refer to the table below. Modes of operation supported by the Timer/Counter unit
are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types of Pulse Width
Modulation (PWM) modes. (See Modes of Operation).

Table 19-5. Waveform Generation Mode Bit Description

WGM12 WGM11 Timer/Counter TOP Update of TOV1 Flag
(CTC1) (PWM11) Mode of Operation OCR1x at Set on
0 0

0 0 0 Normal OxFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0 PWM, Phase and Frequency ICR1 BOTTOM BOTTOM
Correct

9 1 0 0 1 PWM, Phase and Frequency OCR1A BOTTOM BOTTOM
Correct

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 Reserved - - -

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP

Note:

1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of the
timer.

AtmeL Atmel ATmega32A [DATASHEET] 127

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

19.11.2. TCCR1B - Timer/Counter1 Control Register B

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: TCCR1B

Offset: Ox2E

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is Ox4E

Bit 7 6 5 4 3 2 1 0
ICNC1 ICES1 WGM13 WGM12 CS12 CS11 CS10
Access R/W R/wW R/W R/wW R/W R/wW R/W
Reset 0 0 0 0 0 0 0

Bit 7 — ICNC1: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is activated,
the input from the Input Capture pin (ICP1) is filtered. The filter function requires four successive equal
valued samples of the ICP1 pin for changing its output. The Input Capture is therefore delayed by four
Oscillator cycles when the noise canceler is enabled.

Bit 6 — ICES1: Input Capture Edge Select

This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture event. When
the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and when the ICES1 bit is
written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into the Input
Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this can be used to
cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the TCCR1A and
the TCCR1B Register), the ICP1 is disconnected and consequently the Input Capture function is
disabled.

Bit 4 - WGM13: Waveform Generation Mode
Refer to TCCR1A.

Bit 3 - WGM12: Waveform Generation Mode
Refer to TCCR1A.

Bits 2:0 — CS1n: Clock Select [n = 0:2]

The three Clock Select bits select the clock source to be used by the Timer/Counter. Refer to figures
Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling and Timer/Counter Timing Diagram,
Setting of OCF1x, with Prescaler (fok_10/8).

Table 19-6. Clock Select Bit Description
No clock source (Timer/Counter stopped).

0 0 1 clk;o/1 (No prescaling)

AtmeL Atmel ATmega32A [DATASHEET] 128

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

(09.Y /] CA11 CS10 |Description

0 1 0 clk;,0/8 (From prescaler)

0 1 1 clk;,0/64 (From prescaler)

1 0 0 clkl/O/256 (From prescaler)

1 0 1 clki0/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.
1 1 1 External clock source on T1 pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the counter
even if the pin is configured as an output. This feature allows software control of the counting.

Atmel

Atmel ATmega32A [DATASHEET] 129
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

19.11.3.

Bit

Access
Reset

TCNT1L — Timer/Counter1 Low byte

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: TCNT1L

Offset: 0x2C

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x4C

7 6 5 4 3 2 1 0
TCNTAL[7:0]
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Bits 7:0 — TCNT1L[7:0]: Timer/Counter 1 Low byte

The two Timer/Counter 1/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both
for read and for write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high
and low bytes are read and written simultaneously when the CPU accesses these registers, the access is
performed using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. Refer to Accessing 16-bit Registers for details.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match
between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock for all
compare units.

AtmeL Atmel ATmega32A [DATASHEET] 130

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

19.11.4. TCNT1H — Timer/Counter1 High byte

Name: TCNT1H
Offset: 0x2D
Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x4D

Bit 7 6 5 4 3 2 1 0
TCNT1H[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — TCNT1H[7:0]: Timer/Counter 1 High byte
Refer to TCNT1L.

AtmeL Atmel ATmega32A [DATASHEET]
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

131

19.11.5. OCR1AL - Output Compare Register 1 A Low byte
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
Name: OCR1AL
Offset: 0x2A
Reset: 0x00
Property: When addressing I/O Registers as data space the offset address is 0x4A
Bit 7 6 5 4 3 2 1 0
OCR1AL[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bits 7:0 - OCR1AL[7:0]: Output Compare 1 A Low byte
The Output Compare Registers contain a 16-bit value that is continuously compared with the counter
value (TCNT1). A match can be used to generate an Output Compare interrupt, or to generate a
waveform output on the OC1x pin.
The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are written
simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary
High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. Refer to
Accessing 16-bit Registers for details.
AtmeL Atmel ATmega32A [DATASHEET] 132

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

19.11.6. OCR1AH - Output Compare Register 1 A High byte

Name: OCR1AH

Offset: 0x2B

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x4B

Bit 7 6 5 4 3 2 1 0
OCR1AHI[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 —- OCR1AH[7:0]: Output Compare 1 A High byte
Refer to OCR1AL.

AtmeL Atmel ATmega32A [DATASHEET] 133

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

19.11.7. OCR1BL - Output Compare Register 1 B Low byte

Name: OCR1BL

Offset: 0x28

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x48

Bit 7 6 5 4 3 2 1 0
OCR1BL[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 —- OCR1BL[7:0]: Output Compare 1 B Low byte
Refer to OCR1AL.

AtmeL Atmel ATmega32A [DATASHEET] 134

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

19.11.8. OCR1BH - Output Compare Register 1 B High byte

Name: OCR1BH

Offset: 0x29

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x49

Bit 7 6 5 4 3 2 1 0
OCR1BHI[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 —- OCR1BH[7:0]: Output Compare 1 B High byte
Refer to OCR1AL.

AtmeL Atmel ATmega32A [DATASHEET] 135

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

19.11.9. ICR1L - Input Capture Register 1 Low byte
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
Name: ICR1L
Offset: 0x26
Reset: 0x00
Property: When addressing I/O Registers as data space the offset address is 0x46
Bit 7 6 5 4 3 2 1 0
ICR1L[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bits 7:0 — ICR1L[7:0]: Input Capture 1 Low byte
The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the ICP1 pin
(or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture can be used for
defining the counter TOP value.
The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers.
Refer to Accessing 16.bit Registers for details.
AtmeL Atmel ATmega32A [DATASHEET] 136

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

19.11.10. ICR1H - Input Capture Register 1 High byte

Name: ICR1H
Offset: 0x27

Reset: 0x00
Property: When addressing I/O Registers as data space the offset address is 0x47

Bit 7 6 5 4 3 2 1 0
ICR1H[7:0]
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — ICR1H[7:0]: Input Capture 1 High byte
Refer to ICR1L.

Atmel ATmega32A [DATASHEET] 137

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

19.11.11.

Bit

Access
Reset

TIMSK - Timer/Counter Interrupt Mask Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When

addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Note: 1. This register contains interrupt control bits for several Timer/Counters, but only Timer1 bits are
described in this section. The remaining bits are described in their respective timer sections.

Name: TIMSK

Offset: 0x39

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x59

7 6 5 4 3 2 1 0
TICIE1 OCIE1A OCIE1B TOIE1
R/W R/W R/W R/W
0 0 0 0

Bit 5 — TICIE1: Timer/Counter1, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt Vector (see Interrupts) is
executed when the ICF1 Flag, located in TIFR, is set.

Bit 4 — OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Output Compare A match interrupt is enabled. The corresponding Interrupt Vector (see
Interrupts) is executed when the OCF1A Flag, located in TIFR, is set.

Bit 3 — OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Output Compare B match interrupt is enabled. The corresponding Interrupt Vector (see
Interrupts) is executed when the OCF1B Flag, located in TIFR, is set.

Bit 2 — TOIE1: Timer/Counter1, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the
Timer/Counter1 Overflow Interrupt is enabled. The corresponding Interrupt Vector (see Interrupts) is
executed when the TOV1 Flag, located in TIFR, is set.

AtmeL Atmel ATmega32A [DATASHEET] 138

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

19.11.12,

Bit

Access
Reset

TIFR — Timer/Counter Interrupt Flag Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Note: 1. This register contains flag bits for several Timer/Counters, but only Timer1 bits are described in
this section. The remaining bits are described in their respective timer sections.

Name: TIFR
Offset: 0x38
Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x58

7 6 5 4 3 2 1 0
ICF1 OCF1A OCF1B TOV1
R/W R/W R/W R/W
0 0 0 0

Bit 5 — ICF1: Timer/Counter1, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register (ICR1) is
set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the counter reaches the
TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively, ICF1 can
be cleared by writing a logic one to its bit location.

Bit 4 — OCF1A: Timer/Counter1, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare
Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is executed.
Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

Bit 3 — OCF1B: Timer/Counter1, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare
Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is executed.
Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

Bit 2 — TOV1: Timer/Counter1, Overflow Flag

The setting of this flag is dependent of the WGM13:0 bits setting. In Normal and CTC modes, the TOV1
Flag is set when the timer overflows. Refer to table Waveform Generation Mode Bit Description for the
TOV1 Flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

AtmeL Atmel ATmega32A [DATASHEET] 139

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

8-bit Timer/Counter2 with PWM and Asynchronous Operation

20.1. Features
« Single Channel Counter
* Clear Timer on Compare Match (Auto Reload)
* Glitch-free, phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOV2 and OCF2)
* Allows Clocking from External 32kHz Watch Crystal Independent of the 1/0 Clock
20.2. Overview
Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. A simplified block
diagram of the 8-bit Timer/Counter is shown in the figure below. For the actual placement of I/O pins, refer
to Pin Configurations. CPU accessible 1/0 Registers, including 1/O bits and 1/O pins, are shown in bold.
The device-specific I/O Register and bit locations are listed in the Register Description.
Figure 20-1. 8-bit Timer/Counter Block Diagram
A
count > > TOVn
clear (Int. Req.)
Troction Control Logic .
[4—| TOSC1
BOTTOM T/IC
Prescaler Oscillator
rvy TOSC2
Timer/Counter
o]| =
0oCn clkyq
¥ ’—>(Inl.Req.)
=1 » Genermton > ocn
f
5
-
g
a
Synchronized Status Flags o
Syne Unit e
:S(ams Fhi \SSRn 4 A
asynchronous Mode
Select (ASn)
< y >
\ A g
Related Links
Pin Configurations on page 13
AtmeL Atmel ATmega32A [DATASHEET] 140

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

20.2.1.

20.2.2.

Registers

The Timer/Counter (TCNT2) and Output Compare Register (OCR2) are 8-bit registers. Interrupt request
(shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR). All interrupts are

individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are not shown in
the figure since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the
TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by the
Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock source the
Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock
source is selected. The output from the clock select logic is referred to as the timer clock (clkry).

The double buffered Output Compare Register (OCR2) is compared with the Timer/Counter value at all
times. The result of the compare can be used by the waveform generator to generate a PWM or variable
frequency output on the Output Compare Pin (OC2). For details, see Output Compare Unit. The Compare
Match event will also set the Compare Flag (OCF2) which can be used to generate an Output Compare
interrupt request.

Definitions

Many register and bit references in this document are written in general form. A lower case “n” replaces
the Timer/Counter number, in this case 2. However, when using the register or bit defines in a program,
the precise form must be used (i.e., TCNT2 for accessing Timer/Counter2 counter value and so on).

The definitions in the following table are also used extensively throughout the document.

Table 20-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).
MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF (MAX)
or the value stored in the OCR2 Register. The assignment is dependent on the
mode of operation.

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source.
The clock source clkts is by default equal to the MCU clock, clk;o. When the AS2 bit in the ASSR
Register is written to logic one, the clock source is taken from the Timer/Counter Oscillator connected to
TOSC1 and TOSC2. For details on asynchronous operation, refer to Asynchronous Operation of the
Timer/Counter. For details on clock sources and prescaler, refer to Timer/Counter Prescaler.

Related Links

Timer/Counter0 and Timer/Counter] Prescalers on page 102

Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. The following
figure shows a block diagram of the counter and its surrounding environment.

AtmeL Atmel ATmega32A [DATASHEET] 141

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

20.5.

Figure 20-2. Counter Unit Block Diagram

TOVn

DATA BUS 7 Gnrea)
‘ . ¢—| TOSC1
TCNTn : ceart onrol Logic [K, Prescaler OSCT“flOf
et > Tosc2
]["

Signal description (internal signals):
count Increment or decrement TCNT2 by 1.
direction Selects between increment and decrement.
clear Clear TCNT2 (set all bits to zero).
clkts Timer/Counter clock.
TOP Signalizes that TCNT2 has reached maximum value.
BOTTOM Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each
timer clock (clkts). clkt> can be generated from an external or internal clock source, selected by the clock
select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the timer is stopped. However, the
TCNT2 value can be accessed by the CPU, regardless of whether clkr, is present or not. A CPU write
overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the Timer/
Counter Control Register (TCCR2). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare Output OC2. For more details about
advanced counting sequences and waveform generation, refer to Modes of Operation .

The Timer/Counter Overflow (TOV2) Flag is set according to the mode of operation selected by the
WGM21:0 bits. TOV2 can be used for generating a CPU interrupt.

Output Compare Unit

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register (OCR2).
Whenever TCNT2 equals OCR2, the comparator signals a match. A match will set the Output Compare
Flag (OCF2) at the next timer clock cycle. If enabled (OCIE2 = 1), the Output Compare Flag generates an
Output Compare interrupt. The OCF2 Flag is automatically cleared when the interrupt is executed.
Alternatively, the OCF2 Flag can be cleared by software by writing a logical one to its I/O bit location. The
waveform generator uses the match signal to generate an output according to operating mode set by the
WGM21:0 bits and Compare Output mode (COM21:0) bits. The max and bottom signals are used by the
waveform generator for handling the special cases of the extreme values in some modes of operation
(refer to Modes of Operation).

The following figure shows a block diagram of the Output Compare unit.

AtmeL Atmel ATmega32A [DATASHEET] 142

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

20.5.1.

20.5.2.

20.5.3.

Figure 20-3. Output Compare Unit, Block Diagram

- DATA BUS >

OCRn TCNTn

= (8-bit Comparator)

OCFn (Int. Req.)

TOP >
BOTTOM

—P> Waveform Generator »{ OCxy

1

WGMn1:0 COMn1:0

The OCR2 Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For
the normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The
double buffering synchronizes the update of the OCR2 Compare Register to either top or bottom of the
counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM
pulses, thereby making the output glitch-free.

FOCn >

The OCR2 Register access may seem complex, but this is not case. When the double buffering is
enabled, the CPU has access to the OCR2 Buffer Register, and if double buffering is disabled the CPU
will access the OCR2 directly.

Force Output Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by writing a
one to the Force Output Compare (FOC2) bit. Forcing Compare Match will not set the OCF2 Flag or
reload/clear the timer, but the OC2 pin will be updated as if a real Compare Match had occurred (the
COM21:0 bits settings define whether the OC2 pin is set, cleared or toggled).

Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any Compare Match that occurs in the next
timer clock cycle, even when the timer is stopped. This feature allows OCR2 to be initialized to the same
value as TCNT2 without triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output Compare Unit

Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle,
there are risks involved when changing TCNT2 when using the Output Compare channel, independently
of whether the Timer/Counter is running or not. If the value written to TCNT2 equals the OCR2 value, the

AtmeL Atmel ATmega32A [DATASHEET] 143

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Compare Match will be missed, resulting in incorrect waveform generation. Similarly, do not write the
TCNT2 value equal to BOTTOM when the counter is downcounting.

The setup of the OC2 should be performed before setting the Data Direction Register for the port pin to
output. The easiest way of setting the OC2 value is to use the Force Output Compare (FOC2) strobe bit
in Normal mode. The OC2 Register keeps its value even when changing between waveform generation
modes.

Be aware that the COM21:0 bits are not double buffered together with the compare value. Changing the
COM21:0 bits will take effect immediately.

20.6. Compare Match Output Unit
The Compare Output mode (COM21:0) bits have two functions. The waveform generator uses the
COM21:0 bits for defining the Output Compare (OC2) state at the next Compare Match. Also, the
COM21:0 bits control the OC2 pin output source. The figure below shows a simplified schematic of the
logic affected by the COM21:0 bit setting. The I/O Registers, I/0 bits, and 1/O pins in the figure are shown
in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected by the
COM21:0 bits are shown. When referring to the OC2 state, the reference is for the internal OC2 Register,
not the OC2 pin.
Figure 20-4. Compare Match Output Unit, Schematic
COMn1
COMn0 Wave form D Q-
FOCn Generator
1
OCn
OCn 0 Pin
A
D Qi
7p)
% PORT
Q > D Q
Y DDR
clk
The general 1/O port function is overridden by the Output Compare (OC2) from the waveform generator if
either of the COM21:0 bits are set. However, the OC2 pin direction (input or output) is still controlled by
the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC2 pin
(DDR_OC2) must be set as output before the OC2 value is visible on the pin. The port override function is
independent of the Waveform Generation mode.
/Itm eL Atmel ATmega32A [DATASHEET] 144

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

20.6.1.

20.7.1.

20.7.2.

The design of the Output Compare Pin logic allows initialization of the OC2 state before the output is
enabled. Note that some COM21:0 bit settings are reserved for certain modes of operation. See Register
Description.

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM21:0 bits differently in normal, CTC, and PWM modes. For all
modes, setting the COM21:0 = 0 tells the waveform generator that no action on the OC2 Register is to be
performed on the next Compare Match. For compare output actions in the non-PWM modes refer to table
Compare Output Mode, Non-PWM Mode. For fast PWM mode, refer to table Compare Output Mode, Fast
PWM Mode, and for phase correct PWM refer to table Compare Output Mode, Phase Correct PWM
Mode.

A change of the COM21:0 bits state will have effect at the first Compare Match after the bits are written.
For non-PWM modes, the action can be forced to have immediate effect by using the FOC2 strobe bits.

Modes of Operation

The mode of operation (i.e., the behavior of the Timer/Counter and the Output Compare pins) is defined
by the combination of the Waveform Generation mode (WGM21:0) and Compare Output mode
(COM21:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform
Generation mode bits do. The COM21:0 bits control whether the PWM output generated should be
inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM21:0 bits control whether
the output should be set, cleared, or toggled at a Compare Match (refer to Compare Match Output Unit).

For detailed timing information refer to Timer/Counter Timing Diagrams.

Normal Mode

The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting direction
is always up (incrementing), and no counter clear is performed. The counter simply overruns when it
passes its maximum 8-bit value (TOP = OxFF) and then restarts from the bottom (0x00). In normal
operation the Timer/Counter Overflow Flag (TOV2) will be set in the same timer clock cycle as the TCNT2
becomes zero. The TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV2 Flag, the timer
resolution can be increased by software. There are no special cases to consider in the Normal mode, a
new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Output
Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of
the CPU time.

Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2 Register is used to manipulate the
counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT2) matches
the OCR2. The OCR2 defines the top value for the counter, hence also its resolution. This mode allows
greater control of the Compare Match output frequency. It also simplifies the operation of counting
external events.

The timing diagram for the CTC mode is shown in the figure below. The counter value (TCNT2) increases
until a Compare Match occurs between TCNT2 and OCR2, and then counter (TCNT2) is cleared.

AtmeL Atmel ATmega32A [DATASHEET] 145

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

20.7.3.

Figure 20-5. CTC Mode, Timing Diagram

! ! ! T ' OCn Interrupt Flag Set

i : v

: y v _

_ _ _ v

Y v Y

TCNTn / 7
OCn \ Yy v 3
(Toggle) L L (COMn1:0 =1)
Period I: 1 >le 2 el a

An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2
Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value.
However, changing the TOP to a value close to BOTTOM when the counter is running with none or a low
prescaler value must be done with care since the CTC mode does not have the double buffering feature.
If the new value written to OCR2 is lower than the current value of TCNTZ2, the counter will miss the
Compare Match. The counter will then have to count to its maximum value (OxFF) and wrap around
starting at 0x00 before the Compare Match can occur.

For generating a waveform output in CTC mode, the OC2 output can be set to toggle its logical level on
each Compare Match by setting the Compare Output mode bits to toggle mode (COM21:0 = 1). The OC2
value will not be visible on the port pin unless the data direction for the pin is set to output. The waveform
generated will have a maximum frequency of foco = fok 110/2 when OCR2 is set to zero (0x00). The
waveform frequency is defined by the following equation:

foo = f a0
0Cn ~ 27N - (1 + OCRn)

The N variable represents the prescaler factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the counter
counts from MAX to 0x00.

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency PWM
waveform generation option. The fast PWM differs from the other PWM option by its single-slope
operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In non-inverting
Compare Output mode, the Output Compare (OC2) is cleared on the Compare Match between TCNT2
and OCR2, and set at BOTTOM. In inverting Compare Output mode, the output is set on Compare Match
and cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM
mode can be twice as high as the phase correct PWM mode that uses dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capacitors), and
therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value. The
counter is then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is
shown in the following figure. The TCNT2 value is in the timing diagram shown as a histogram for
illustrating the single-slope operation. The diagram includes non-inverted and inverted PWM outputs. The

AtmeL Atmel ATmega32A [DATASHEET] 146

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2 and

TCNT2.
Figure 20-6. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

OCRn Update
and
TOVn Interrupt Flag Set

P R—
P
P B

AN /1
R

¥ y LR
OCn (COMn1:0 =2)

OCn |:| |:| (COMn1:0 =3)
N D A R

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the interrupt is
enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin. Setting the
COM21:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COM21:0 to 3. The actual OC2 value will only be visible on the port pin if the data direction for
the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2 Register at
the Compare Match between OCR2 and TCNT2, and clearing (or setting) the OC2 Register at the timer
clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ fclk_I/O
fOCnPWM ~ N-256

The N variable represents the prescaler factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform
output in the fast PWM mode. If the OCR2 is set equal to BOTTOM, the output will be a narrow spike for
each MAX+1 timer clock cycle. Setting the OCR2 equal to MAX will result in a constantly high or low
output (depending on the polarity of the output set by the COM21:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2 to
toggle its logical level on each Compare Match (COM21:0 = 1). The waveform generated will have a
maximum frequency of foco = fo_10/2 when OCR2 is set to zero. This feature is similar to the OC2 toggle
in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM
mode.

20.7.4. Phase Correct PWM Mode
The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM waveform
generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts
repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output
AtmeL Atmel ATmega32A [DATASHEET] 147

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

mode, the Output Compare (OC2) is cleared on the Compare Match between TCNT2 and OCR2 while
upcounting, and set on the Compare Match while downcounting. In inverting Output Compare mode, the
operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are
preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct PWM mode
the counter is incremented until the counter value matches MAX. When the counter reaches MAX, it
changes the count direction. The TCNT2 value will be equal to MAX for one timer clock cycle. The timing
diagram for the phase correct PWM mode is shown on the following figure. The TCNT2 value is in the
timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent
compare matches between OCR2 and TCNT2.

Figure 20-7. Phase Correct PWM Mode, Timing Diagram

i i

OCn Interrupt Flag Set

OCRn Update

TOVn Interrupt Flag Set

-
-
-
-
-
-t

o N

A A Y A

L]
-

OCn (COMn1:0 =2)

OCn

Y
Period }47144472444734#
The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The Interrupt
Flag can be used to generate an interrupt each time the counter reaches the BOTTOM value.

(COMn1:0 = 3)

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin.
Setting the COM21:0 bits to 2 will produce a non-inverted PWM. An inverted PWM output can be
generated by setting the COM21:0 to 3 (refer to table Compare Output Mode, Phase Correct PWM
Mode). The actual OC2 value will only be visible on the port pin if the data direction for the port pin is set
as output. The PWM waveform is generated by clearing (or setting) the OC2 Register at the Compare
Match between OCR2 and TCNT2 when the counter increments, and setting (or clearing) the OC2
Register at Compare Match between OCR2 and TCNT2 when the counter decrements. The PWM
frequency for the output when using phase correct PWM can be calculated by the following equation:

_ fclk_I/O
fOCnPCPWM ~ N-510

The N variable represents the prescaler factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2 Register represent special cases when generating a PWM waveform
output in the phase correct PWM mode. If the OCR2 is set equal to BOTTOM, the output will be

AtmeL Atmel ATmega32A [DATASHEET] 148

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

continuously low and if set equal to MAX the output will be continuously high for non-inverted PWM
mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in the timing diagram above OCn has a transition from high to low even
though there is no Compare Match. The point of this transition is to guarantee symmetry around
BOTTOM. There are two cases that give a transition without Compare Match:

* OCR2A changes its value from MAX, like in the timing diagram above. When the OCR2A value is MAX
the OCn pin value is the same as the result of a down-counting Compare Match. To ensure symmetry
around BOTTOM the OCn value at MAX must correspond to the result of an up-counting Compare
Match.

* The timer starts counting from a value higher than the one in OCR2A, and for that reason misses the
Compare Match and hence the OCn change that would have happened on the way up.

20.8. Timer/Counter Timing Diagrams

The following figures show the Timer/Counter in Synchronous mode, and the timer clock (clkts) is
therefore shown as a clock enable signal. In Asynchronous mode, clk;,o should be replaced by the Timer/
Counter Oscillator clock. The figures include information on when Interrupt Flags are set. The following
figure contains timing data for basic Timer/Counter operation. The figure shows the count sequence close
to the MAX value in all modes other than phase correct PWM mode.

Figure 20-8. Timer/Counter Timing Diagram, no Prescaling

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

The next figure shows the same timing data, but with the prescaler enabled.

Figure 20-9. Timer/Counter Timing Diagram, with Prescaler (fx_y0/8)

A T R N
(cclku;f/"& T T T

—

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

—

TOVn

The next figure shows the setting of OCF2 in all modes except CTC mode.

AtmeL Atmel ATmega32A [DATASHEET] 149

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 20-10. Timer/Counter Timing Diagram, Setting of OCF2, with Prescaler (f¢x_j0/8)

e ([UUUUUUUUUULLUIIUUUUUUUITDIL
wl
(Clkl/o/8)
TCNTn OCRn - 1 OCRn OCRn + 1 OCRn +2
OCRn OCRn Value
OCFn

The figure below shows the setting of OCF2 and the clearing of TCNT2 in CTC mode.

Figure 20-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Prescaler (fx_0/8)

QR
:

JRHRATE

TOP -1

BOTTOM

BOTTOM + 1

OCFn

20.9.

20.9.1.

Asynchronous Operation of the Timer/Counter

Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

* Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the
Timer Registers TCNT2, OCR2, and TCCR2 might be corrupted. A safe procedure for switching

clock source is:

ok 0N~

Atmel

Disable the Timer/Counter2 interrupts by clearing OCIE2 and TOIE2.
Select clock source by setting AS2 as appropriate.

Write new values to TCNT2, OCR2, and TCCR2.

To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB.
Clear the Timer/Counter2 Interrupt Flags.

Atmel ATmega32A [DATASHEET]

150

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

@ N~

Altmel

Enable interrupts, if needed.

The Oscillator is optimized for use with a 32.768kHz watch crystal. Applying an external clock to the
TOSC1 pin may result in incorrect Timer/Counter2 operation. The CPU main clock frequency must
be more than four times the Oscillator frequency.

When writing to one of the registers TCNT2, OCR2, or TCCRZ2, the value is transferred to a
temporary register, and latched after two positive edges on TOSC1. The user should not write a
new value before the contents of the temporary register have been transferred to its destination.
Each of the three mentioned registers have their individual temporary register, which means that
e.g. writing to TCNT2 does not disturb an OCR2 write in progress. To detect that a transfer to the
destination register has taken place, the Asynchronous Status Register — ASSR has been
implemented.

When entering Power-save mode after having written to TCNT2, OCR2, or TCCR2, the user must
wait until the written register has been updated if Timer/Counter2 is used to wake up the device.
Otherwise, the MCU will enter sleep mode before the changes are effective. This is particularly
important if the Output Compare2 interrupt is used to wake up the device, since the Output
Compare function is disabled during writing to OCR2 or TCNT2. If the write cycle is not finished,
and the MCU enters sleep mode before the OCR2UB bit returns to zero, the device will never
receive a Compare Match interrupt, and the MCU will not wake up.

If Timer/Counter2 is used to wake the device up from Power-save or Extended Standby mode,
precautions must be taken if the user wants to re-enter one of these modes: The interrupt logic
needs one TOSC1 cycle to be reset. If the time between wake-up and re-entering sleep mode is
less than one TOSC1 cycle, the interrupt will not occur, and the device will fail to wake up. If the
user is in doubt whether the time before re-entering Power-save or Extended Standby mode is
sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has elapsed:

Write a value to TCCR2, TCNT2, or OCR2.
Wait until the corresponding Update Busy Flag in ASSR returns to zero.
Enter Power-save or Extended Standby mode.

When the asynchronous operation is selected, the 32.768kHz Oscillator for Timer/Counter2 is
always running, except in Power-down and Standby modes. After a Power-up Reset or Wake-up
from Power-down or Standby mode, the user should be aware of the fact that this Oscillator might
take as long as one second to stabilize. The user is advised to wait for at least one second before
using Timer/Counter2 after Power-up or Wake-up from Power-down or Standby mode. The
contents of all Timer/Counter2 Registers must be considered lost after a wake-up from Power-down
or Standby mode due to unstable clock signal upon start-up, no matter whether the Oscillator is in
use or a clock signal is applied to the TOSC1 pin.

Description of wake up from Power-save or Extended Standby mode when the timer is clocked
asynchronously: When the interrupt condition is met, the wake up process is started on the
following cycle of the timer clock, that is, the timer is always advanced by at least one before the
processor can read the counter value. After wake-up, the MCU is halted for four cycles, it executes
the interrupt routine, and resumes execution from the instruction following SLEEP.

Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect
result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be done
through a register synchronized to the internal 1/0 clock domain. Synchronization takes place for
every rising TOSC1 edge. When waking up from Power-save mode, and the 1/O clock (clk;,n) again
becomes active, TCNT2 will read as the previous value (before entering sleep) until the next rising
TOSC1 edge. The phase of the TOSC clock after waking up from Power-save mode is essentially
unpredictable, as it depends on the wake-up time. The recommended procedure for reading
TCNT2 is thus as follows:

Atmel ATmega32A [DATASHEET] 151

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Write any value to either of the registers OCR2 or TCCR2.
Wait for the corresponding Update Busy Flag to be cleared.
Read TCNT2.

1.
2.
3.

« During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous
timer takes three processor cycles plus one timer cycle. The timer is therefore advanced by at least
one before the processor can read the timer value causing the setting of the Interrupt Flag. The
Output Compare Pin is changed on the timer clock and is not synchronized to the processor clock.

20.10. Timer/Counter Prescaler
Figure 20-12. Prescaler for Timer/Counter2

ko el
10-BIT T/C PRESCALER
o N (o] v o
v | e = Q e
&:’g éﬁ 8 g |y
(o]
AS2 o |° %— = %"
PSR2
Yy YyYVYV
CS20 ;&
CS21 r&
CS22

TIMER/COUNTER2 CLOCK SOURCE

clkp,

The clock source for Timer/Counter2 is named clkyogs. clkrog is by default connected to the main system
clock clkyo. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1
pin. This enables use of Timer/Counter2 as a Real Time Counter (RTC). When AS2 is set, pins TOSC1
and TOSC2 are disconnected from Port C. A crystal can then be connected between the TOSC1 and
TOSC2 pins to serve as an independent clock source for Timer/Counter2. The Oscillator is optimized for
use with a 32.768kHz crystal. Applying an external clock source to TOSC1 is not recommended.

For Timer/Counter2, the possible prescaled selections are: clkt,s/8, clktos/32, clkrs/64, clkos5/128,
clkto5/256, and clktos/1024. Additionally, clktos as well as 0 (stop) may be selected. Setting the PSR2 bit
in SFIOR resets the prescaler. This allows the user to operate with a predictable prescaler.

20.11. Register Description

AtmeL Atmel ATmega32A [DATASHEET] 152

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

20.11.1.

Bit

Access
Reset

TCCR2 - Timer/Counter Control Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: TCCR2

Offset: 0x25

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x45

7 6 5 4 3 2 1 0

FOC2 WGM20 COoM21 COoM20 WGM21 CS22 CSs21 CS20
W RwW R/W R/W R/wW R/W R/wW R/W
0 0 0 0 0 0 0 0

Bit 7 - FOC2: Force Output Compare

The FOC2 bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring
compatibility with future devices, this bit must be set to zero when TCCR2 is written when operating in
PWM mode. When writing a logical one to the FOC2 bit, an immediate Compare Match is forced on the
waveform generation unit. The OC2 output is changed according to its COM21:0 bits setting. Note that
the FOC2 bit is implemented as a strobe. Therefore it is the value present in the COM21:0 bits that
determines the effect of the forced compare.

A FOC2 strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2 as
TOP.

The FOC2 bit is always read as zero.

Bit 6 — WGM20: Waveform Generation Mode [n=0:1]

These bits control the counting sequence of the counter, the source for the maximum (TOP) counter
value, and what type of waveform generation to be used. Modes of operation supported by the Timer/
Counter unit are: Normal mode, Clear Timer on Compare Match (CTC) mode, and two types of Pulse
Width Modulation (PWM) modes. See table below and Modes of Operation.

Table 20-2. Waveform Generation Mode Bit Description

WGM21 | WGM20 | Timer/Counter Mode of Operation Update of TOV2 Flag
(CTC2) |(PWM2) OCR2

Normal OxFF | Immediate
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCR2 Immediate MAX
3 1 1 Fast PWM OxFF BOTTOM MAX

Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of the timer.

Bits 5:4 — COM2n: Compare Match Output Mode [n = 1:0]
These bits control the Output Compare Pin (OC2) behavior. If one or both of the COM21:0 bits are set,
the OC2 output overrides the normal port functionality of the I/O pin it is connected to. However, note that

AtmeL Atmel ATmega32A [DATASHEET] 153

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

the Data Direction Register (DDR) bit corresponding to OC2 pin must be set in order to enable the output
driver.

When OC2 is connected to the pin, the function of the COM21:0 bits depends on the WGM21:0 bit
setting. The following table shows the COM21:0 bit functionality when the WGM21:0 bits are set to a
normal or CTC mode (non-PWM).

Table 20-3. Compare Output Mode, Non-PWM Mode

0 0 Normal port operation, OC2 disconnected.
0 1 Toggle OC2 on Compare Match

1 0 Clear OC2 on Compare Match

1 1 Set OC2 on Compare Match

The next table shows the COM21:0 bit functionality when the WGM21:0 bits are set to fast PWM mode.
Table 20-4. Compare Output Mode, Fast PWM Mode(")

0 0 Normal port operation, OC2 disconnected.

0 1 Reserved

1 0 Clear OC2 on Compare Match, set OC2 at BOTTOM,
(non-inverting mode)

1 1 Set OC2 on Compare Match, clear OC2 at BOTTOM,

(inverting mode)
Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the Compare
Match is ignored, but the set or clear is done at BOTTOM. See Fast PWM Mode for more details.

The table below shows the COM21:0 bit functionality when the WGM21:0 bits are set to phase correct
PWM mode.

Table 20-5. Compare Output Mode, Phase Correct PWM Mode!")

0 0 Normal port operation, OC2 disconnected.
0 1 Reserved
1 0 Clear OC2 on Compare Match when up-counting. Set OC2 on Compare Match when

downcounting.
1 1 Set OC2 on Compare Match when up-counting. Clear OC2 on Compare Match when
downcounting.

Note: 1. A special case occurs when OCR2 equals TOP and COM21 is set. In this case, the Compare
Match is ignored, but the set or clear is done at TOP. See Phase Correct PWM Mode for more details.

Bit 3 - WGM21: Waveform Generation Mode [n=0:1]
Refer to WGM20.

AtmeL Atmel ATmega32A [DATASHEET] 154

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Bits 2:0 — CS2n: Clock Select [n = 2:0]
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 20-6. Clock Select Bit Description

CS22 CS21 CS20 |Description

0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk;o/1 (No prescaling)

0 1 0 clk;o/8 (From prescaler)

0 1 1 clky0/32 (From prescaler)

1 0 0 clkl/O/64 (From prescaler)

1 0 1 clk;0/128 (From prescaler)

1 1 0 clk;0/256 (From prescaler)

1 1 1 clky;0/1024 (From prescaler)

Atmel

Atmel ATmega32A [DATASHEET] 155
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

20.11.2. TCNTO - Timer/Counter Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter
unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the Compare Match on the following
timer clock. Modifying the counter (TCNTO) while the counter is running, introduces a risk of missing a
Compare Match between TCNTO and the OCRO Register.

Name: TCNTO

Offset: 0x24

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x44

7 6 5 4 3 2 1 0
TCNTO[7:0]
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bits 7:0 — TCNTO[7:0]

AtmeL Atmel ATmega32A [DATASHEET] 156

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

20.11.3. OCRO - Output Compare Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

The Output Compare Register contains an 8-bit value that is continuously compared with the counter
value (TCNTO). A match can be used to generate an Output Compare interrupt, or to generate a
waveform output on the OCO pin.

Name: OCRO
Offset: 0x23
Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x43

7 6 5 4 3 2 1 0
OCRO[7:0]
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Bits 7:0 — OCRO[7:0]

AtmeL Atmel ATmega32A [DATASHEET] 157

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

20.11.4.

Bit

Access
Reset

ASSR - Asynchronous Status Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: ASSR

Offset: 0x22

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x42

7 6 5 4 3 2 1 0
AS2 TCN2UB OCR2UB TCR2UB

R/wW R R R

0 0 0 0

Bit 3 — AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter 2 is clocked from the I/O clock, clk;,o. When AS2 is written to
one, Timer/Counter 2 is clocked from a crystal Oscillator connected to the Timer Oscillator 1 (TOSC1) pin.
When the value of AS2 is changed, the contents of TCNT2, OCR2, and TCCR2 might be corrupted.

Bit 2 — TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. When
TCNT2 has been updated from the temporary storage register, this bit is cleared by hardware. A logical
zero in this bit indicates that TCNT2 is ready to be updated with a new value.

Bit 1 — OCR2UB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR?2 is written, this bit becomes set. When OCR2
has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in
this bit indicates that OCR2 is ready to be updated with a new value.

Bit 0 — TCR2UB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2 is written, this bit becomes set. When
TCCR2 has been updated from the temporary storage register, this bit is cleared by hardware. A logical
zero in this bit indicates that TCCR2 is ready to be updated with a new value.

If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is set, the
updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2, and TCCR2 are different. When reading TCNTZ2, the actual
timer value is read. When reading OCR2 or TCCR2, the value in the temporary storage register is read.

AtmeL Atmel ATmega32A [DATASHEET] 158

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

20.11.5.

Bit

Access
Reset

TIMSK - Timer/Counter Interrupt Mask Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When

addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: TIMSK

Offset: 0x39

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x59

7 6 5 4 3 2 1 0
OCIE2 TOIE2
R/W R/wW
0 0

Bit 7 — OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable

When the OCIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2
Compare Match interrupt is enabled. The corresponding interrupt is executed if a Compare Match in
Timer/Counter2 occurs (i.e., when the OCF2 bit is set in the Timer/Counter Interrupt Flag Register —
TIFR).

Bit 6 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2
Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2
occurs (i.e., when the TOV2 bit is set in the Timer/Counter Interrupt Flag Register — TIFR).

AtmeL Atmel ATmega32A [DATASHEET] 159

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

20.11.6.

Bit

Access
Reset

TIFR — Timer/Counter Interrupt Flag Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: TIFR
Offset: 0x38
Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x58

7 6 5 4 3 2 1 0
OCF2 TOV2
R/W R/wW
0 0

Bit 7 — OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when a Compare Match occurs between the Timer/Counter2 and the data in
OCR2 - Output Compare Register2. OCF2 is cleared by hardware when executing the corresponding
interrupt Handling Vector. Alternatively, OCF2 is cleared by writing a logic one to the flag. When the I-bit
in SREG, OCIE2 (Timer/Counter2 Compare Match Interrupt Enable), and OCF2 are set (one), the Timer/
Counter2 Compare Match Interrupt is executed.

Bit 6 — TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware
when executing the corresponding interrupt Handling Vector. Alternatively, TOV2 is cleared by writing a
logic one to the flag. When the SREG I-bit, TOIE2 (Timer/Counter2 Overflow Interrupt Enable), and TOV2
are set (one), the Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter2 changes counting direction at 0x00.

AtmeL Atmel ATmega32A [DATASHEET] 160

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

20.11.7. SFIOR - Special Function 10 Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: SFIOR

Offset: 0x30

Reset: O

Property: When addressing I/O Registers as data space the offset address is 0x50

PSR2
R/wW

Bit 1 - PSR2: Prescaler Reset Timer/Counter2

When this bit is written to one, the Timer/Counter2 prescaler will be reset. The bit will be cleared by
hardware after the operation is performed. Writing a zero to this bit will have no effect. This bit will always
be read as zero if Timer/Counter2 is clocked by the internal CPU clock. If this bit is written when Timer/
Counter2 is operating in Asynchronous mode, the bit will remain one until the prescaler has been reset.

AtmeL Atmel ATmega32A [DATASHEET] 161

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

21. 8-bit Timer/Counter0 with PWM

21.1. Features
* Single Compare Unit Counter
e Clear Timer on Compare Match (Auto Reload)
* Glitch-free, phase Correct Pulse Width Modulator (PWM)
* Frequency Generator
+ External Event Counter
* 10-bit Clock Prescaler
* Overflow and Compare Match Interrupt Sources (TOVO0 and OCFO)

21.2. Overview

Timer/CounterQ is a general purpose, single compare unit, 8-bit Timer/Counter module. A simplified block
diagram of the 8-bit Timer/Counter is shown in the figure below. For the actual placement of I/O pins, refer
to Pin Configurations. CPU accessible 1/0 Registers, including 1/0 bits and I/O pins, are shown in bold.

The device-specific I/O Register and bit locations are listed in the Register Description.

Figure 21-1. 8-bit Timer/Counter Block Diagram

A
< > TCCRn
count . TOVn
clear c | Loci " (Int. Req.)
direction ontrol Logie clky,
Clock Select
A A Edge
BOTTOM TOP Detector -] Tn
F v Y / \
wn Timer/Counter A Y
a TCNTn I -0 I I: OXFFI (From Prescaler)
<
Q OCn
=) F(lnt. Req.)
— Wave form
|$ o Genveration OCn
<->| OCRn
\J
Related Links
Pin Configurations on page 13
AtmeL Atmel ATmega32A [DATASHEET]

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

162

21.21.

21.2.2.

Registers

The Timer/Counter (TCNTO) and Output Compare Register (OCRO0) are 8-bit registers. Interrupt request
(abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR). All
interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK). TIFR and TIMSK are
not shown in the figure since these registers are shared by other timer units.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the TO
pin. The Clock Select logic block controls which clock source and edge the Timer/Counter uses to
increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The
output from the clock select logic is referred to as the timer clock (clkrg).

The double buffered Output Compare Register (OCRO) is compared with the Timer/Counter value at all
times. The result of the compare can be used by the waveform generator to generate a PWM or variable
frequency output on the Output Compare Pin (OCO0). For details, refer to Output Compare Unit. The
Compare Match event will also set the Compare Flag (OCFO0) which can be used to generate an Output
Compare interrupt request.

Definitions

Many register and bit references in this document are written in general form. A lower case “n” replaces
the Timer/Counter number, in this case 0. However, when using the register or bit defines in a program,
the precise form must be used (i.e., TCNTO for accessing Timer/CounterQ counter value and so on).

The definitions in the following table are also used extensively throughout the document.

Table 21-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).
MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF (MAX)
or the value stored in the OCRO Register. The assignment is dependent on the
mode of operation.

Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source is
selected by the clock select logic which is controlled by the clock select (CS02:0) bits located in the
Timer/Counter Control Register (TCCRO). For details on clock sources and prescaler, see Timer/Counte1
and Timer/Counter0 Prescalers.

Related Links

Timer/Counter0 and Timer/Counter1 Prescalers on page 102

Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. The following
figure shows a block diagram of the counter and its surrounding environment.

AtmeL Atmel ATmega32A [DATASHEET] 163

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 21-2. Counter Unit Block Diagram

) TOVn
DATA BUS (Int. Req.)
; Clock Select
count . Edge |
clear ok, |/ < Detector [*]| ™"
TCNTn <@——{ Control Logic [. I\
direction
(From Prescaler)
BOTTOM TOP
Signal description (internal signals):
count Increment or decrement TCNTO by 1.
direction Selects between increment and decrement.
clear Clear TCNTO (set all bits to zero).
clkyg Timer/Counter clock.
TOP Signalizes that TCNTO has reached maximum value.
BOTTOM Signalizes that TCNTO has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each
timer clock (clktq). clktg can be generated from an external or internal clock source, selected by the clock
select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the timer is stopped. However, the
TCNTO value can be accessed by the CPU, regardless of whether clkg is present or not. A CPU write
overrides (has priority over) all counter clear or count operations.

The counting sequence is determined by the setting of the WGM01 and WGMOO bits located in the Timer/
Counter Control Register (TCCRO). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare Output OCO. For more details about
advanced counting sequences and waveform generation, see Modes of Operation.

The Timer/Counter Overflow (TOVO) Flag is set according to the mode of operation selected by the
WGMO01:0 bits. TOVO can be used for generating a CPU interrupt.

21.5. Output Compare Unit
The 8-bit comparator continuously compares TCNTO with the Output Compare Register (OCRO).
Whenever TCNTO equals OCRO, the comparator signals a match. A match will set the Output Compare
Flag (OCFO0) at the next timer clock cycle. If enabled (OCIEQ = 1 and global interrupt flag in SREG is set),
the Output Compare Flag generates an Output Compare interrupt. The OCFO Flag is automatically
cleared when the interrupt is executed. Alternatively, the OCFO Flag can be cleared by software by writing
a logical one to its I/O bit location. The waveform generator uses the match signal to generate an output
according to operating mode set by the WGMO01:0 bits and Compare Output mode (COMO01:0) bits. The
max and bottom signals are used by the waveform generator for handling the special cases of the
extreme values in some modes of operation (see Modes of Operation).
The following figure shows a block diagram of the Output Compare unit.

AtmeL Atmel ATmega32A [DATASHEET] 164

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

21.5.1.

21.5.2,

21.5.3.

Figure 21-3. Output Compare Unit, Block Diagram

< DATA BUS >
ry A
OCRn TCNTn
| = (8-bit Comparator) |
oCan (Int. Req.)
A
TP
BOTTOM __] Waveform Generator oCn
FOCn]

WGMn1:0 COMn1:0
The OCRO Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For
the normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The
double buffering synchronizes the update of the OCRO Compare Register to either top or bottom of the
counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM
pulses, thereby making the output glitch-free.

The OCRO Register access may seem complex, but this is not case. When the double buffering is
enabled, the CPU has access to the OCRO Buffer Register, and if double buffering is disabled the CPU
will access the OCRO directly.

Force Output Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by writing a
one to the Force Output Compare (FOCO) bit. Forcing Compare Match will not set the OCFO Flag or
reload/clear the timer, but the OCO pin will be updated as if a real Compare Match had occurred (the
COMO01:0 bits settings define whether the OCO pin is set, cleared or toggled).

Compare Match Blocking by TCNTO Write

All CPU write operations to the TCNTO Register will block any Compare Match that occurs in the next
timer clock cycle, even when the timer is stopped. This feature allows OCRO to be initialized to the same
value as TCNTO without triggering an interrupt when the Timer/Counter clock is enabled.

Using the Output Compare Unit

Since writing TCNTO in any mode of operation will block all compare matches for one timer clock cycle,
there are risks involved when changing TCNTO when using the Output Compare channel, independently
of whether the Timer/Counter is running or not. If the value written to TCNTO equals the OCRO value, the
Compare Match will be missed, resulting in incorrect waveform generation. Similarly, do not write the
TCNTO value equal to BOTTOM when the counter is downcounting.

The setup of the OCO should be performed before setting the Data Direction Register for the port pin to
output. The easiest way of setting the OCO value is to use the Force Output Compare (FOCO) strobe bit
in Normal mode. The OCO Register keeps its value even when changing between waveform generation
modes.

Be aware that the COMO01:0 bits are not double buffered together with the compare value. Changing the
COMO1:0 bits will take effect immediately.

AtmeL Atmel ATmega32A [DATASHEET] 165

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

21.6.1.

Compare Match Output Unit

The Compare Output mode (COMO01:0) bits have two functions. The waveform generator uses the
COMO01:0 bits for defining the Output Compare (OCO0) state at the next Compare Match. Also, the
COMO01:0 bits control the OCO pin output source. The figure below shows a simplified schematic of the
logic affected by the COMO1:0 bit setting. The I/O Registers, I/0 bits, and 1/O pins in the figure are shown
in bold. Only the parts of the general I/0O Port Control Registers (DDR and PORT) that are affected by the
COMO01:0 bits are shown. When referring to the OCO state, the reference is for the internal OCO Register,

not the OCO pin. If a System Reset occur, the OCO Register is reset to "0".
Figure 21-4. Compare Match Output Unit, Schematic

COMn1

COMn0 Wave form
FOCn Generator

> 1
OCn
OCn Pin

DATABUS
~~
%
-

Y DDR

clk;q

The general 1/0O port function is overridden by the Output Compare (OCO) from the waveform generator if
either of the COMO01:0 bits are set. However, the OCO pin direction (input or output) is still controlled by
the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OCO pin
(DDR_OCO0) must be set as output before the OCO value is visible on the pin. The port override function is
independent of the Waveform Generation mode.

The design of the Output Compare Pin logic allows initialization of the OCO state before the output is
enabled. Note that some COMO01:0 bit settings are reserved for certain modes of operation. See Register
Description.

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMO01:0 bits differently in normal, CTC, and PWM modes. For all
modes, setting the COMO01:0 = 0 tells the waveform generator that no action on the OC2 Register is to be
performed on the next Compare Match. For compare output actions in the non-PWM modes refer to Table
21-3. For fast PWM mode, refer to Table 21-4, and for phase correct PWM refer to Table 21-5.

A change of the COMO01:0 bits state will have effect at the first Compare Match after the bits are written.
For non-PWM modes, the action can be forced to have immediate effect by using the FOCO strobe bits.

AtmeL Atmel ATmega32A [DATASHEET] 166

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

21.71.

21.7.2.

Modes of Operation

The mode of operation (i.e., the behavior of the Timer/Counter and the Output Compare pins) is defined
by the combination of the Waveform Generation mode (WGMO01:0) and Compare Output mode
(COMO01:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform
Generation mode bits do. The COMO01:0 bits control whether the PWM output generated should be
inverted or not (inverted or non-inverted PWM). For non-PWM modes the COMO01:0 bits control whether
the output should be set, cleared, or toggled at a Compare Match (see Compare Match Output Unit).

For detailed timing information refer to Timer/Counter Timing Diagrams.

Normal Mode

The simplest mode of operation is the Normal mode (WGMO01:0 = 0). In this mode the counting direction
is always up (incrementing), and no counter clear is performed. The counter simply overruns when it
passes its maximum 8-bit value (TOP = OxFF) and then restarts from the bottom (0x00). In normal
operation the Timer/Counter Overflow Flag (TOVO) will be set in the same timer clock cycle as the TCNTO
becomes zero. The TOVO Flag in this case behaves like a ninth bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOVO Flag, the timer
resolution can be increased by software. There are no special cases to consider in the Normal mode, a
new counter value can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Output
Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of
the CPU time.

Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMO01:0 = 2), the OCRO0 Register is used to manipulate the
counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNTO) matches
the OCRO0. The OCRO defines the top value for the counter, hence also its resolution. This mode allows
greater control of the Compare Match output frequency. It also simplifies the operation of counting
external events.

The timing diagram for the CTC mode is shown in the figure below. The counter value (TCNTO) increases
until a Compare Match occurs between TCNTO and OCRO, and then counter (TCNTO) is cleared.

Figure 21-5. CTC Mode, Timing Diagram

OCn Interrupt Flag Set

P —
[P B—
PP E—

TCNTn N

OCn ! — !
(Toggle)

Period I: 1 :I: 24+—3—+744>‘

An interrupt can be generated each time the counter value reaches the TOP value by using the OCFO
Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value.
However, changing the TOP to a value close to BOTTOM when the counter is running with none or a low
prescaler value must be done with care since the CTC mode does not have the double buffering feature.

(COMn1:0 = 1)

AtmeL Atmel ATmega32A [DATASHEET] 167

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

21.7.3.

If the new value written to OCRO is lower than the current value of TCNTO, the counter will miss the
Compare Match. The counter will then have to count to its maximum value (OxFF) and wrap around
starting at 0x00 before the Compare Match can occur.

For generating a waveform output in CTC mode, the OCO output can be set to toggle its logical level on
each Compare Match by setting the Compare Output mode bits to toggle mode (COMO01:0 = 1). The OCO
value will not be visible on the port pin unless the data direction for the pin is set to output. The waveform
generated will have a maximum frequency of foc = fox 110/2 when OCRO is set to zero (0x00). The
waveform frequency is defined by the following equatioﬁ:

foo= fak0
0Ctn ~ 2N - (1 + OCRn)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO Flag is set in the same timer clock cycle that the counter
counts from MAX to 0x00.

Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO01:0 = 3) provides a high frequency PWM
waveform generation option. The fast PWM differs from the other PWM option by its single-slope
operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In non-inverting
Compare Output mode, the Output Compare (OCO) is cleared on the Compare Match between TCNTO
and OCRO, and set at BOTTOM. In inverting Compare Output mode, the output is set on Compare Match
and cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM
mode can be twice as high as the phase correct PWM mode that uses dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capacitors), and
therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the MAX value. The
counter is then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is
shown in the figure below. The TCNTO value is in the timing diagram shown as a histogram for illustrating
the single-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small
horizontal line marks on the TCNTO slopes represent compare matches between OCRO0 and TCNTO.

AtmeL Atmel ATmega32A [DATASHEET] 168

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

21.7.4.

Figure 21-6. Fast PWM Mode, Timing Diagram

OCRn Interrupt Flag Set

OCRn Update
and
TOVn Interrupt Flag Set

PR
P R
P R

4 /
7 4

Y A Y Y Y
OCn (COMn1:0 = 2)

OCn l_l l_l (COMn1:0 =3)
period 1 2 b1 a5 o

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches MAX. If the interrupt is
enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCO pin. Setting the
COMO01:0 bits to 2 will produce a non-inverted PWM and an inverted PWM output can be generated by
setting the COMO01:0 to 3 (see Table 21-4). The actual OCO value will only be visible on the port pin if the
data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing)
the OCO Register at the Compare Match between OCRO0 and TCNTO, and clearing (or setting) the OCO
Register at the timer clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ fclk_I/O
fOCnPWM ~ N-256

The N variable represents the prescaler factor (1, 8, 32, 64, 128, 256 or 1024).

The extreme values for the OCRO Register represent special cases when generating a PWM waveform
output in the fast PWM mode. If the OCRO is set equal to BOTTOM, the output will be a narrow spike for
each MAX+1 timer clock cycle. Setting the OCRO equal to MAX will result in a constantly high or low
output (depending on the polarity of the output set by the COMO01:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OCO to
toggle its logical level on each Compare Match (COMO01:0 = 1). The waveform generated will have a
maximum frequency of foco = fo_10/2 when OCRO is set to zero. This feature is similar to the OCO toggle
in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM
mode.

Phase Correct PWM Mode

The phase correct PWM mode (WGMO01:0 = 1) provides a high resolution phase correct PWM waveform
generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts
repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OCO) is cleared on the Compare Match between TCNTO and OCRO while
upcounting, and set on the Compare Match while downcounting. In inverting Output Compare mode, the

AtmeL Atmel ATmega32A [DATASHEET] 169

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are
preferred for motor control applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct PWM mode
the counter is incremented until the counter value matches MAX. When the counter reaches MAX, it
changes the count direction. The TCNTO value will be equal to MAX for one timer clock cycle. The timing
diagram for the phase correct PWM mode is shown on the figure below. The TCNTO value is in the timing
diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent
compare matches between OCRO and TCNTO.

Figure 21-7. Phase Correct PWM Mode, Timing Diagram

i i OCn Interrupt Flag Set

OCRn Update

TOVn Interrupt Flag Set

-
-t

-«
-l
-«
-

N N

A A Y A

OCn u
ﬁ

(COMn1:0 = 2)

OCn

\
Period }47144172441734»‘
The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches BOTTOM. The Interrupt
Flag can be used to generate an interrupt each time the counter reaches the BOTTOM value.

(COMn1:0 = 3)

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2 pin.
Setting the COM21:0 bits to 2 will produce a non-inverted PWM. An inverted PWM output can be
generated by setting the COM21:0 to 3 (refer to Table 21-5). The actual OC2 value will only be visible on
the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by
clearing (or setting) the OCO Register at the Compare Match between OCR0 and TCNTO when the
counter increments, and setting (or clearing) the OCO Register at Compare Match between OCRO and
TCNTO when the counter decrements. The PWM frequency for the output when using phase correct
PWM can be calculated by the following equation;

_ fakuyo
focapcPwM = N 510

The N variable represents the prescaler factor (1, 8, 32, 64, 128, 256 or 1024).

The extreme values for the OCRO Register represent special cases when generating a PWM waveform
output in the phase correct PWM mode. If the OCRO is set equal to BOTTOM, the output will be
continuously low and if set equal to MAX the output will be continuously high for non-inverted PWM
mode. For inverted PWM the output will have the opposite logic values.

AtmeL Atmel ATmega32A [DATASHEET] 170

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Atmel

At the very start of period 2 in the timing diagram OCn has a transition from high to low even though there
is no Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are
two cases that give a transition without a Compare Match:

* OCRO changes its value from MAX, like in the timing diagram above. When the OCRO value is MAX the
OCn pin value is the same as the result of a down-counting Compare Match. To ensure symmetry around
BOTTOM the OCn value at MAX must correspond to the result of an up-counting Compare Match.

* The timer starts counting from a value higher than the one in OCRO, and for that reason misses the
Compare Match and hence the OCn change that would have happened on the way up.

Timer/Counter Timing Diagrams

The Timer/Counter is a synchronous design and the timer clock (clktg) is therefore shown as a clock
enable signal in the following figures. The figures include information on when interrupt flags are set. The
first figure below contains timing data for basic Timer/Counter operation. It shows the count sequence
close to the MAX value in all modes other than phase correct PWM mode.

Figure 21-8. Timer/Counter Timing Diagram, no Prescaling

clkyo

clky

n
(clkyo /1)

TCNTn MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

The next figure shows the same timing data, but with the prescaler enabled.

Figure 21-9. Timer/Counter Timing Diagram, with Prescaler (f;_;0/8)

RN
| | 1 i 1

MAX -1 MAX

BOTTOM BOTTOM + 1

TOVn

The next figure shows the setting of OCFO in all modes except CTC mode.

Atmel ATmega32A [DATASHEET] 171
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 21-10. Timer/Counter Timing Diagram, Setting of OCFO0, with Prescaler (f¢x_j0/8)

s RN NS A RERE
cl,
(e, /8)
TCNTn OCRn -1 OCRn OCRn +1 OCRn +2
—
OCRn OCRn Value
OCFn

The next figure shows the setting of OCFO0 and the clearing of TCNTO in CTC mode.

Figure 21-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match Mode, with Prescaler (fx_0/8)

R R

1 i 1

JRHRATE

TOP -1

BOTTOM

BOTTOM + 1

OCFn

21.9.

Atmel

Register Description

Atmel ATmega32A [DATASHEET]

172

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

21.91.

Bit

Access

Reset

TCCRO - Timer/Counter Control Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: TCCRO

Offset: 0x25

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x45

7 6 5 4 3 2 1 0

FOCO WGMO00 COMO1 COMO00 WGMO01 CS02 CS01 CS00
W RwW R/W R/W R/wW R/W R/wW R/W
0 0 0 0 0 0 0 0

Bit 7 — FOCO0: Force Output Compare

The FOCO bit is only active when the WGMOO bit specifies a non-PWM mode. However, for ensuring
compatibility with future devices, this bit must be set to zero when TCCRO is written when operating in
PWM mode. When writing a logical one to the FOCO bit, an immediate Compare Match is forced on the
waveform generation unit. The OCO output is changed according to its COM21:0 bits setting. Note that
the FOCO bit is implemented as a strobe. Therefore it is the value present in the COMO01:0 bits that
determines the effect of the forced compare.

A FOCO strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCRO as
TOP.

The FOCO bit is always read as zero.

Bit 6 - WGM00: Waveform Generation Mode

These bits control the counting sequence of the counter, the source for the maximum (TOP) counter
value, and what type of waveform generation to be used. Modes of operation supported by the Timer/
Counter unit are: Normal mode, Clear Timer on Compare Match (CTC) mode, and two types of Pulse
Width Modulation (PWM) modes. See table below and Modes of Operation.

Table 21-2. Waveform Generation Mode Bit Description

WGMO01 |WGMO00 | Timer/Counter Mode of Operation(") Update of TOV0 Flag
(CTCO) |(PWMO) OCRO

Normal OxFF | Immediate
1 0 1 PWM, Phase Correct OxFF TOP BOTTOM
2 1 0 CTC OCRO | Immediate MAX
3 1 1 Fast PWM OxFF BOTTOM MAX

Note: 1. The CTCO and PWMO bit definition names are now obsolete. Use the WGMO01:0 definitions.
However, the functionality and location of these bits are compatible with previous versions of the timer.

Bits 5:4 — COMOn: Compare Match Output Mode [n = 1:0]
These bits control the Output Compare Pin (OCO0) behavior. If one or both of the COMO01:0 bits are set,
the OCO output overrides the normal port functionality of the I/O pin it is connected to. However, note that

AtmeL Atmel ATmega32A [DATASHEET] 173

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

the Data Direction Register (DDR) bit corresponding to the OCO pin must be set in order to enable the
output driver.

When OCO is connected to the pin, the function of the COMO01:0 bits depends on the WGMO01:0 bit
setting. The following table shows the COMO01:0 bit functionality when the WGMO01:0 bits are set to a
normal or CTC mode (non-PWM).

Table 21-3. Compare Output Mode, Non-PWM Mode

0 0 Normal port operation, OCO disconnected.
0 1 Toggle OCO on Compare Match

1 0 Clear OCO0 on Compare Match

1 1 Set OC0 on Compare Match

The next table shows the COMO01:0 bit functionality when the WGMO01:0 bits are set to fast PWM mode.
Table 21-4. Compare Output Mode, Fast PWM Mode(")

0 0 Normal port operation, OCO disconnected.

0 1 Reserved

1 0 Clear OCO on Compare Match, set OC0O at BOTTOM,
(non-inverting mode)

1 1 Set OCO on Compare Match, clear OC0O at BOTTOM,

(inverting mode)
Note: 1. A special case occurs when OCRO equals TOP and COMO01 is set. In this case, the Compare
Match is ignored, but the set or clear is done at BOTTOM. See Fast PWM Mode for more details.

The table below shows the COMO01:0 bit functionality when the WGMO01:0 bits are set to phase correct
PWM mode.

Table 21-5. Compare Output Mode, Phase Correct PWM Mode!(")

0 0 Normal port operation, OCO disconnected.
0 1 Reserved
1 0 Clear OC0 on Compare Match when up-counting. Set OC0O on Compare Match when

downcounting.
1 1 Set OCO on Compare Match when up-counting. Clear OCO on Compare Match when
downcounting.

Note: 1. A special case occurs when OCRO equals TOP and COMO01 is set. In this case, the Compare
Match is ignored, but the set or clear is done at TOP. See Phase Correct PWM Mode for more details.

Bit 3 - WGMO01: Waveform Generation Mode [n=0:1]
Refer to WGMO0O0 above.

AtmeL Atmel ATmega32A [DATASHEET] 174

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Bits 2:0 — CSOn: Clock Select [n = 2:0]
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 21-6. Clock Select Bit Description

No clock source (Timer/Counter stopped).

0 0 1 clk;o/1 (No prescaling)

0 1 0 clk;,o/8 (From prescaler)

0 1 1 clk;,0/64 (From prescaler)

1 0 0 clkl/O/256 (From prescaler)

1 0 1 clk;0/1024 (From prescaler)

1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on falling edge.

If external pin modes are used for the Timer/CounterO0, transitions on the TO pin will clock the counter
even if the pin is configured as an output. This feature allows software control of the counting.

AtmeL Atmel ATmega32A [DATASHEET] 175

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

21.9.2,

Access
Reset

TCNTO - Timer/Counter Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter
unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the Compare Match on the following
timer clock. Modifying the counter (TCNTO) while the counter is running, introduces a risk of missing a
Compare Match between TCNTO and the OCRO Register.

Name: TCNTO

Offset: 0x24

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x44

7 6 5 4 3 2 1 0
TCNTO[7:0]
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bits 7:0 — TCNTO[7:0]

AtmeL Atmel ATmega32A [DATASHEET] 176

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

21.9.3.

Access
Reset

OCRO - Output Compare Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

The Output Compare Register contains an 8-bit value that is continuously compared with the counter
value (TCNTO). A match can be used to generate an Output Compare interrupt, or to generate a
waveform output on the OCO pin.

Name: OCRO
Offset: 0x23
Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x43

7 6 5 4 3 2 1 0
OCRO[7:0]
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Bits 7:0 — OCRO[7:0]

AtmeL Atmel ATmega32A [DATASHEET] 177

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

21.9.4.

Bit

Access

Reset

TIMSK - Timer/Counter Interrupt Mask Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When

addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: TIMSK

Offset: 0x37

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x57

7 6 5 4 3 2 1 0
OCIEO TOIEO
R/wW R/W
0 0

Bit 1 — OCIEO: Timer/CounterTimer/Counter0 Output Compare Match Interrupt Enable

When the OCIEQ bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter0
Compare Match interrupt is enabled. The corresponding interrupt is executed if a Compare Match in
Timer/Counter0 occurs (i.e., when the OCFO bit is set in the Timer/Counter Interrupt Flag Register —
TIFR).

Bit 0 — TOIEO: Timer/CounterTimer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter0
Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0
occurs (i.e., when the TOVO bit is set in the Timer/Counter Interrupt Flag Register — TIFR).

AtmeL Atmel ATmega32A [DATASHEET] 178

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

21.9.5.

Bit

Access

Reset

TIFR — Timer/Counter Interrupt Flag Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: TIFR
Offset: 0x36
Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x56

7 6 5 4 3 2 1 0
OCF0 TOVO
R/wW R/W
0 0

Bit 1 — OCF0: Output Compare Flag 0

The OCFO bit is set (one) when a Compare Match occurs between the Timer/Counter0O and the data in
OCRO - Output Compare Register0. OCFO is cleared by hardware when executing the corresponding
interrupt Handling Vector. Alternatively, OCFO is cleared by writing a logic one to the flag. When the I-bit
in SREG, OCIEO (Timer/Counter0 Compare Match Interrupt Enable), and OCFO are set (one), the Timer/
Counter0 Compare Match Interrupt is executed.

Bit 0 — TOVO0: Timer/Counter0 Overflow Flag

The TOVO bit is set (one) when an overflow occurs in Timer/Counter0. TOVO is cleared by hardware
when executing the corresponding interrupt Handling Vector. Alternatively, TOVO is cleared by writing a
logic one to the flag. When the SREG I-bit, TOIEO (Timer/Counter0 Overflow Interrupt Enable), and TOVO
are set (one), the Timer/Counter0 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter0 changes counting direction at 0x00.

AtmeL Atmel ATmega32A [DATASHEET] 179

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

22. SPI - Serial Peripheral Interface

22.1. Features

Full-duplex, Three-wire Synchronous Data Transfer
Master or Slave Operation

LSB First or MSB First Data Transfer

Seven Programmable Bit Rates

End of Transmission Interrupt Flag

Write Collision Flag Protection

Wake-up from Idle Mode

Double Speed (CK/2) Master SPI Mode

22.2. Overview
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmega32A and peripheral devices or between several AVR devices.

Figure 22-1. SPI Block Diagram(")

| VR
MISO
y =0
XTAL MSB LSB O -
-] DI s Q
J 8 BIT SHIFT REGISTER Q
READ DATA BUFFER 3
DIVIDER &
12/4/8/16/32/64/128 . e
Y 5
o
Y V VvV Y L "_:K =z
SPI CLOCK (MASTER clo T
SELECT CLOCK ¢ S SCK
LOGIC M
A 'y
%l = Y 2 y e
|| @ SS
o B
x a
=l ow| X
25 8
MSTR
SPI CONTROL +SPE
1 O x| 4 < « o
o
=0 g 8 Elou B b QoA YE
o = ‘ ‘ ‘ ‘ ‘% n| »n A = O O un n
N N
| SPI STATUS REGISTER | [SPI CONTROL REGISTER
R 8 8,

v v

SPI INTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Refer to Pin Configurations, table Port B Pins Alternate Functions in Alternate Functions of Port

B

for SPI pin placement.

AtmeL Atmel ATmega32A [DATASHEET] 180

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

The interconnection between Master and Slave CPUs with SPI is shown in the figure below. The system
consists of two shift registers, and a Master Clock generator. The SPI Master initiates the communication
cycle when pulling low the Slave Select SS pin of the desired Slave. Master and Slave prepare the data
to be sent in their respective Shift Registers, and the Master generates the required clock pulses on the
SCK line to interchange data. Data is always shifted from Master to Slave on the Master Out — Slave In,
MOSI, line, and from Slave to Master on the Master In — Slave Out, MISO, line. After each data packet,
the Master will synchronize the Slave by pulling high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This must be
handled by user software before communication can start. When this is done, writing a byte to the SPI
Data Register starts the SPI clock generator, and the hardware shifts the eight bits into the Slave. After
shifting one byte, the SPI clock generator stops, setting the end of Transmission Flag (SPIF). If the SPI
interrupt enable bit (SPIE) in the SPCR Register is set, an interrupt is requested. The Master may
continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high the Slave
Select, SS line. The last incoming byte will be kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS
pin is driven high. In this state, software may update the contents of the SPI Data Register, SPDR, but the
data will not be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. As one
byte has been completely shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable
bit, SPIE, in the SPCR Register is set, an interrupt is requested. The Slave may continue to place new
data to be sent into SPDR before reading the incoming data. The last incoming byte will be kept in the
Buffer Register for later use.

Figure 22-2. SPI Master-slave Interconnection

MSB MASTER LSB s wmiso MSB SLAVE LSB

8 BIT SHIFT REGISTER |——«———— | 8 BIT SHIFT REGISTER[*~

A

iMOSI MOSIi

SHIFT
ENABLE
SPI %SCK SCK%
CLOCK GENERATOR - —_
_iss SS!
Vo I

The system is single buffered in the transmit direction and double buffered in the receive direction. This
means that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle
is completed. When receiving data, however, a received character must be read from the SPI Data
Register before the next character has been completely shifted in. Otherwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct
sampling of the clock signal, the minimum low and high periods should be:

Low period: longer than 2 CPU clock cycles.
High period: longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to the table below. For more details on automatic port overrides, refer to Alternate Port
Functions.

AtmeL Atmel ATmega32A [DATASHEET] 181

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 22-1. SPI Pin Overrides(?)

m Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input
MISO Input User Defined
SCK User Defined Input
SS User Defined Input

Note: 1. Refer to table Port B Pins Alternate Functions in Alternate Functions of Port B for a detailed
description of how to define the direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a simple
transmission. DDR_SPI in the examples must be replaced by the actual Data Direction Register
controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction
bits for these pins. E.g. if MOSI is placed on pin PB5, replace DD MOSTI with DDB5 and DDR_SPI with
DDRB.

Assembly Code Example!")

SPI_MasterInit:
; Set MOSI and SCK output, all others input

1di rl7, (1<<DD_MOST) | (1<<DD_SCK)

out DDR_SPI,rl7

; Enable SPI, Master, set clock rate fck/16
1di rl7, (1<<SPE) | (1<<MSTR) | (1<<SPRO)

out SPCR, rl7

ret

SPI_MasterTransmit:
; Start transmission of data (rl6)
out SPDR, rl6

Wait Transmit:
; Wait for transmission complete
sbis SPSR, SPIF
rjmp Wait Transmit
ret

C Code Example!")

void SPI MasterInit (void)

{
/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD_MOSI) | (1<<DD_SCK) ;
/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO) ;

}

void SPI MasterTransmit (char cData)
{
/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */
while (! (SPSR & (1l<<SPIF)))

’

}

Note: 1. See About Code Examples.

The following code examples show how to initialize the SPI as a Slave and how to
perform a simple reception.

AtmeL Atmel ATmega32A [DATASHEET] 182

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

22.3.

22.3.1.

22.3.2.

Assembly Code Example!’)

SPI_Slavelnit:
; Set MISO output, all others input

1di rl7, (1<<DD_MISO)
out DDR_SPI,rl7

; Enable SPI

1di rl7, (1<<SPE)

out SPCR, rl7

ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR, SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in rl6,SPDR
ret

C Code Example!")

void SPI_Slavelnit (void)
{
/* Set MISO output, all others input */
DDR SPT = (1<<DD_MISO) ;
/* Enable SPI */
SPCR = (1<<SPE) ;
}

char SPI_SlaveReceive (void)

{
/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)))

/* Return Data Register */
return SPDR;
}

Note: 1. See About Code Examples.

Related Links

Pin Configurations on page 13

Alternate Functions of Port B on page 81
Alternate Port Functions on page 78
About Code Examples on page 19

SS Pin Functionality

Slave Mode

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is held low,
the SPI is activated, and MISO becomes an output if configured so by the user. All other pins are inputs.
When SS is driven high, all pins are inputs, and the SPI is passive, which means that it will not receive
incoming data. The SPI logic will be reset once the SS pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous with the
master clock generator. When the SS pin is driven high, the SPI slave will immediately reset the send and
receive logic, and drop any partially received data in the Shift Register.

Master Mode

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the direction of
the SS pin.

AtmeL Atmel ATmega32A [DATASHEET] 183

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

If SS is configured as an output, the pin is a general output pin which does not affect the SPI system.
Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin is driven
low by peripheral circuitry when the SPI is configured as a Master with the SS pin defined as an input, the
SPI system interprets this as another master selecting the SPI as a slave and starting to send data to it.
To avoid bus contention, the SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of the SPI
becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is set, the
interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possibility that
SS is driven low, the interrupt should always check that the MSTR bit is still set. If the MSTR bit has been
cleared by a slave select, it must be set by the user to re-enable SPI Master mode.

22.4. Data Modes
There are four combinations of SCK phase and polarity with respect to serial data, which are determined
by control bits CPHA and CPOL. The SPI data transfer formats are shown in the figures in this section.
Data bits are shifted out and latched in on opposite edges of the SCK signal, ensuring sufficient time for
data signals to stabilize. This is clearly seen by summarizing Table 22-3 and Table 22-4, as done below:
Table 22-2. CPOL and CPHA Functionality
SPI Mode Leading Edge Trailing Edge
CPOL=0, CPHA=0 Sample (Rising) Setup (Falling)
1 CPOL=0, CPHA=1 Setup (Rising) Sample (Falling)
2 CPOL=1, CPHA=0 Sample (Falling) Setup (Rising)
3 CPOL=1, CPHA=1 Setup (Falling) Sample (Rising)
Figure 22-3. SPI Transfer Format with CPHA =0
[~ sck (cpoL=0
mode(O)
SCK (CPOL=1) — |
[~ SAMPLE1
L MOSIMISO
[CHANGE 0
voste AL AL AL AT H TR LR ALY
CHANGE 0
Cwsorne A O O K KA
I /
MSB first (DORD =0) MSB Bit 6 Bit5 Bit4 Bit3 Bit2 Bit 1 LSB
LSB first(DORD=1) LSB Bit 1 Bit2 Bit3 Bit 4 Bit5 Bit 6 MSB
AtmeL Atmel ATmega32A [DATASHEET] 184

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 22-4. SPI Transfer Format with CPHA =1

22.5.

Atmel

[~ Sck (cPoOL =0)
mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

]
L moies L
—

CHANGE 0
MISO PIN

2t

uy

L

O
Il

| []
L
e
X

L L
L L] L
X H
a H

igigh

1

WD
s

R

\\I/WJ

MSB first (DORD = 0)
LSB first (DORD = 1)

Register Description

MSB
LSB

Bit 6
Bit 1

Bit 5

Bit2

Bit 4 Bit 3 Bit2 Bit 1 LSB
Bit3 Bit4 Bit 5 Bit 6 MSB

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

185

22.51. SPCR - SPI Control Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
Name: SPCR
Offset: 0x0D
Reset: 0x00
Property: When addressing I/O Registers as data space the offset address is 0x2D
Bit 7 6 5 4 3 2 1 0
SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0
Bit 7 — SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and if the Global
Interrupt Enable bit in SREG is set.
Bit 6 — SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI operations.
Bit 5— DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.
When the DORD bit is written to zero, the MSB of the data word is transmitted first.
Bit 4 — MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic zero. If SS
is configured as an input and is driven low while MSTR is set, MSTR will be cleared, and SPIF in SPSR
will become set. The user will then have to set MSTR to re-enable SPI Master mode.
Bit 3 — CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low when
idle. Refer to the figures in Data Modes for an example. The CPOL functionality is summarized below:
Table 22-3. CPOL Functionality
CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising
Bit 2 - CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or trailing
(last) edge of SCK. Refer to the figures in Data Modes for an example. The CPHA functionality is
summarized below:
Atmel ATmega32A [DATASHEET] 186
me

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Table 22-4. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample

Bits 1:0 — SPRn: SPI Clock Rate Select [n = 1:0]

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have no effect
on the Slave. The relationship between SCK and the Oscillator Clock frequency f,s. is shown in the table
below.

Table 22-5. Relationship between SCK and Oscillator Frequency

0 0 0 foscld

osc/
0 0 1 fosc/16
0 1 0 fosc/64
0 1 1 fosc/128
1 0 0 fosc/2
1 0 1 fosc/8
1 1 0 fosc/32
1 1 1 fosc/64
AtmeL Atmel ATmega32A [DATASHEET] 187

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

22.5.2,

Bit

Access

Reset

SPSR - SPI Status Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: SPSR

Offset: OxOE

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x2E

7 6 5 4 3 2 1 0
SPIF WCOL SPI12X
R R R/W
0 0 0

Bit 7 — SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in SPCR is set
and global interrupts are enabled. If SS is an input and is driven low when the SPI is in Master mode, this
will also set the SPIF Flag. SPIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, the SPIF bit is cleared by first reading the SPI Status Register with SPIF
set, then accessing the SPI Data Register (SPDR).

Bit 6 — WCOL: Write Collision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The WCOL bit (and
the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set, and then accessing the
SPI Data Register.

Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI is in
Master mode (refer to Table 22-5). This means that the minimum SCK period will be two CPU clock
periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at fys./4 or lower.

The SPI interface on the ATmega32A is also used for program memory and EEPROM downloading or
uploading. Refer to section Serial Downloading for serial programming and verification.

AtmeL Atmel ATmega32A [DATASHEET] 188

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

22.5.3. SPDR - SPI Data Register is a read/write register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: SPDR

Offset: OxOF

Reset: OxXX

Property: When addressing I/O Registers as data space the offset address is 0x2F

Bit 7 6 5 4 3 2 1 0
SPID7 SPID6 SPID5 SPID4 SPID3 SPID2 SPID1 SPIDO
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset X X X X X X X X

Bits 7:0 — SPIDn: SPI Data

The SPI Data Register is a read/write register used for data transfer between the Register File and the
SPI Shift Register. Writing to the register initiates data transmission. Reading the register causes the Shift
Register Receive buffer to be read.

+ SPID7 is MSB
+ SPIDOis LSB

AtmeL Atmel ATmega32A [DATASHEET] 189

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

23. USART - Universal Synchronous and Asynchronous serial Receiver
and Transmitter

23.1. Features

Full Duplex Operation (Independent Serial Receive and Transmit Registers)
Asynchronous or Synchronous Operation

Master or Slave Clocked Synchronous Operation

High Resolution Baud Rate Generator

Supports Serial Frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits
Odd or Even Parity Generation and Parity Check Supported by Hardware
Data OverRun Detection

Framing Error Detection

Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
Multi-processor Communication Mode

Double Speed Asynchronous Communication Mode

23.2. Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a highly-
flexible serial communication device. A simplified block diagram of the USART Transmitter is shown in the
figure below. CPU accessible 1/0 Registers and 1/O pins are shown in bold.

Atmel

Atmel ATmega32A [DATASHEET] 190
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 23-1. USART Block Diagram(")

PARITY

——UDRn(Receive)—— CHECKER

|

I UBRRn [H:L] I

| osc |

I v I

| I

I BAUD RATE GENERATOR | |

: Y I

['svne LoGic = L

I »| conTROL [*1™]XCKn

| I

I Transmitter_:

) >
: UDRnN(Transmit) CONTROL |
7 PARITY I

0 | GENERATOR |
={ I PIN Lo
2] | TRANSMIT SHIFT REGISTER 4 controL [TXDn
< >
e __
a r Receiver |

I > cLock RX |

I RECOVERY CoNTROL | |

| I

I DATA PIN I

| RECEIVE SHIFT REGISTER RECOVERY | controL [+ Reen

| |

| Y |

| I

| I

UCSRnA UCSRnB UCSRnC

Note: 1. Refer to Pin Configurations, table Overriding Signals for Alternate Functions PD7:PD4 and
table Overriding Signals for Alternate Functions in PD3:PD0 in Alternate Functions of Port D for USART
pin placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from the top):
Clock generator, Transmitter and Receiver. Control Registers are shared by all units. The clock
generation logic consists of synchronization logic for external clock input used by synchronous slave
operation, and the baud rate generator. The XCK (transfer clock) pin is only used by synchronous transfer
mode. The Transmitter consists of a single write buffer, a serial Shift Register, Parity Generator and
control logic for handling different serial frame formats. The write buffer allows a continuous transfer of
data without any delay between frames. The Receiver is the most complex part of the USART module
due to its clock and data recovery units. The recovery units are used for asynchronous data reception. In
addition to the recovery units, the Receiver includes a parity checker, control logic, a Shift Register and a
two level receive buffer (UDR). The Receiver supports the same frame formats as the Transmitter, and
can detect Frame Error, Data OverRun and Parity Errors.

Related Links
Pin Configurations on page 13

Alternate Functions of Port D on page 86

AtmeL Atmel ATmega32A [DATASHEET] 191

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

23.21.

AVR USART vs. AVR UART - Compatibility
The USART is fully compatible with the AVR UART regarding:

« Bitlocations inside all USART Registers.
* Baud Rate Generation.

« Transmitter Operation.

« Transmit Buffer Functionality.

* Receiver Operation.

However, the receive buffering has two improvements that will affect the compatibility in some special
cases:

* A second Buffer Register has been added. The two Buffer Registers operate as a circular FIFO
buffer. Therefore the UDR must only be read once for each incoming data! More important is the
fact that the Error Flags (FE and DOR) and the ninth data bit (RXB8) are buffered with the data in
the receive buffer. Therefore the status bits must always be read before the UDR Register is read.
Otherwise the error status will be lost since the buffer state is lost.

* The Receiver Shift Register can now act as a third buffer level. This is done by allowing the
received data to remain in the serial Shift Register (see Block Diagram in previous section) if the
Buffer Registers are full, until a new start bit is detected. The USART is therefore more resistant to
Data OverRun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register location:

*+ CHR9is changed to UCSZ2.
*« ORis changed to DOR.

Clock Generation

The clock generation logic generates the base clock for the Transmitter and Receiver. The USART
supports four modes of clock operation: normal asynchronous, double speed asynchronous, Master
synchronous and Slave Synchronous mode. The UMSEL bit in USART Control and Status Register C
(UCSRC) selects between asynchronous and synchronous operation. Double speed (Asynchronous
mode only) is controlled by the U2X found in the UCSRA Register. When using Synchronous mode
(UMSEL = 1), the Data Direction Register for the XCK pin (DDR_XCK) controls whether the clock source
is internal (Master mode) or external (Slave mode). The XCK pin is only active when using Synchronous
mode.

Below is a block diagram of the clock generation logic.

AtmeL Atmel ATmega32A [DATASHEET] 192

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

23.3.1.

Figure 23-2. Clock Generation Logic, Block Diagram

UBRRn
uU2Xxn
foscn

Prescaling UBRRn+1 . N _
Down-Counter > 2 | /4 » 2 >
A
OSC — txclk
DDR_.
v 3
Sync - Edge .
xcki Register | Detector >
7oK A UMSELn
Pin | xcko v _
DDR_XCKn UCPOLN
rxclk

Signal description:

txclk Transmitter clock (internal signal).

rxclk Receiver base clock (internal signal).

xcki Input from XCK pin (internal Signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (internal signal). Used for synchronous master operation.

fosc XTAL pin frequency (System Clock).

Internal Clock Generation — The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of operation.
The description in this section refers to the block diagram above.

The USART Baud Rate Register (UBRR) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock (fosc), is
loaded with the UBRR value each time the counter has counted down to zero or when the UBRRL
Register is written. A clock is generated each time the counter reaches zero. This clock is the baud rate
generator clock output (= fosc/(UBRR+1)). The Transmitter divides the baud rate generator clock output
by 2, 8, or 16 depending on mode. The baud rate generator output is used directly by the Receiver’s clock
and data recovery units. However, the recovery units use a state machine that uses 2, 8, or 16 states
depending on mode set by the state of the UMSEL, U2X and DDR_XCK bits.

The table below contains equations for calculating the baud rate (in bits per second) and for calculating
the UBRR value for each mode of operation using an internally generated clock source.

AtmeL Atmel ATmega32A [DATASHEET] 193

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

23.3.2.

23.3.3.

23.3.4.

Table 23-1. Equations for Calculating Baud Rate Register Setting

Operating Mode Equation for Calculating Baud Equation for Calculating UBRR
Rate Value

Asynchronous Normal e fosc
mode (U2X = 0) BAUD = 12 UBRR+ 1) UBRR = Te5tp — |
Asynchronous Double fosc fosc
Speed mode (U2x=1) BAUD = gggRr+ 1) UBRR = gBAuD —
Synchronous Master mode fosc fosc

BAUD = 5 UBRRF 1) UBRR = 55300 ~

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).

BAUD Baud rate (in bits per second, bps).
fosc System oscillator clock frequency.

UBRR Contents of the UBRRH and UBRRL Registers, (0-4095).

Some examples of UBRR values for some system clock frequencies are found in Table 23-9.

Double Speed Operation (U2X)

The transfer rate can be doubled by setting the U2X bit in UCSRA. Setting this bit only has effect for the
asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling the transfer
rate for asynchronous communication. Note however that the Receiver will in this case only use half the
number of samples (reduced from 16 to 8) for data sampling and clock recovery, and therefore a more
accurate baud rate setting and system clock are required when this mode is used.

For the Transmitter, there are no downsides.

External Clock

External clocking is used by the synchronous slave modes of operation. The description in this section
refers to Figure 23-2.

External clock input from the XCK pin is sampled by a synchronization register to minimize the chance of
meta-stability. The output from the synchronization register must then pass through an edge detector
before it can be used by the Transmitter and Receiver. This process introduces a two CPU clock period
delay and therefore the maximum external XCK clock frequency is limited by the following equation:

fosc
fxek <=3

The value of f,s; depends on the stability of the system clock source. It is therefore recommended to add
some margin to avoid possible loss of data due to frequency variations.

Synchronous Clock Operation

When Synchronous mode is used (UMSEL = 1), the XCK pin will be used as either clock input (Slave) or
clock output (Master). The dependency between the clock edges and data sampling or data change is the
same. The basic principle is that data input (on RxD) is sampled at the opposite XCK clock edge of the
edge the data output (TxD) is changed.

AtmeL Atmel ATmega32A [DATASHEET] 194

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 23-3. Synchronous Mode XCK Timing

UCPOL =1 XCK

womo X Y Y Y

Sample

UCPOL =0 XCK

momo X Y Y Y

Sample
The UCPOL bit UCRSC selects which XCK clock edge is used for data sampling and which is used for
data change. As the figure above shows, when UCPOL is zero the data will be changed at rising XCK
edge and sampled at falling XCK edge. If UCPOL is set, the data will be changed at falling XCK edge and
sampled at rising XCK edge.

Frame Formats
A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits),
and optionally a parity bit for error checking. The USART accepts all 30 combinations of the following as
valid frame formats:

« 1 start bit

« 5,6,7, 8, or 9 data bits

. no, even or odd parity bit

1 or2stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits, up to a
total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit is inserted after
the data bits, before the stop bits. When a complete frame is transmitted, it can be directly followed by a
new frame, or the communication line can be set to an idle (high) state. The figure below illustrates the
possible combinations of the frame formats. Bits inside brackets are optional.

Figure 23-4. Frame Formats
| R |

AME
FRAME I

|
(IDLE) \St/ 0 X 1 X 2 X 3 X 4 X[5]X[6]X[7]X[8]X[P]/ Sp (St/IDLE)

St Start bit, always low.
(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.
Sp Stop bit, always high.
IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be high.

The frame format used by the USART is set by the UCSZ2:0, UPM1:0 and USBS bits in UCSRB and
UCSRC. The Receiver and Transmitter use the same setting. Note that changing the setting of any of
these bits will corrupt all ongoing communication for both the Receiver and Transmitter.

AtmeL Atmel ATmega32A [DATASHEET] 195

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

The USART Character Size (UCSZ2:0) bits select the number of data bits in the frame. The USART
Parity mode (UPM1:0) bits enable and set the type of parity bit. The selection between one or two stop
bits is done by the USART Stop Bit Select (USBS) bit. The Receiver ignores the second stop bit. An FE
(Frame Error) will therefore only be detected in the cases where the first stop bit is zero

23.4.1. Parity Bit Calculation
The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the result of
the exclusive or is inverted. The relation between the parity bit and data bits is as follows:
Peven:dn_1@---®d3@d2®d1@d0@1
Pyg=a,_1®.0d;0d,®d; ®d, D1
Peven Parity bit using even parity
Podd Parity bit using odd parity
d, Data bit n of the character
If used, the parity bit is located between the last data bit and first stop bit of a serial frame.
23.5. USART Initialization
The USART has to be initialized before any communication can take place. The initialization process
normally consists of setting the baud rate, setting frame format and enabling the Transmitter or the
Receiver depending on the usage. For interrupt driven USART operation, the Global Interrupt Flag should
be cleared (and interrupts globally disabled) when doing the initialization.
Before doing a re-initialization with changed baud rate or frame format, be sure that there are no ongoing
transmissions during the period the registers are changed. The TXC Flag can be used to check that the
Transmitter has completed all transfers, and the RXC Flag can be used to check that there are no unread
data in the receive buffer. Note that the TXC Flag must be cleared before each transmission (before UDR
is written) if it is used for this purpose.
The following simple USART initialization code examples show one assembly and one C function that are
equal in functionality. The examples assume asynchronous operation using polling (no interrupts enabled)
and a fixed frame format. The baud rate is given as a function parameter. For the assembly code, the
baud rate parameter is assumed to be stored in the r17:r16 Registers. When the function writes to the
UCSRC Register, the URSEL bit (MSB) must be set due to the sharing of 1/0 location by UBRRH and
UCSRC.
Assembly Code Example!")
USART Init:
; Set baud rate
out UBRRH, rl7
out UBRRL, rl6
; Enable receiver and transmitter
1di rl6, (1<<RXEN) | (1<<TXEN)
out UCSRB, rl6
; Set frame format: 8data, 2stop bit
1di rl6, (1<<URSEL) | (1<<USBS) | (3<<UCSZ0)
out UCSRC, rl6
ret
C Code Example!")
#define FOSC 1843200 // Clock Speed
#define BAUD 9600
AtmeL Atmel ATmega32A [DATASHEET] 196

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

23.6.1.

#define MYUBRR FOSC/16/BAUD-1
void main(void)

{

USART Init (MYUBRR)

}
void USART Init(unsigned int ubrr)

{
/*Set baud rate */

UBRROH = (unsigned char) (ubrr>>8);
UBRROL = (unsigned char)ubrr;

Enable receiver and transmitter */

UCSRB = (1<<RXEN) | (1<<TXEN) ;

/* Set frame format: 8data, 2stop bit */
UCSRC = (1<<URSEL) | (1<<USBS) | (3<<UCSZ0) ;

}

Note: 1. See About Code Examples.

More advanced initialization routines can be written to include frame format as
parameters, disable interrupts, and so on. However, many applications use a fixed setting
of the baud and control registers, and for these types of applications the initialization
code can be placed directly in the main routine, or be combined with initialization code for
other I/O modules.

Related Links
About Code Examples on page 19

Data Transmission — The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRB Register.
When the Transmitter is enabled, the normal port operation of the TxD pin is overridden by the USART
and given the function as the Transmitter’s serial output. The baud rate, mode of operation and frame
format must be set up once before doing any transmissions. If synchronous operation is used, the clock
on the XCK pin will be overridden and used as transmission clock.

Sending Frames with 5 to 8 Data Bits

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The CPU
can load the transmit buffer by writing to the UDR 1/O location. The buffered data in the transmit buffer will
be moved to the Shift Register when the Shift Register is ready to send a new frame. The Shift Register is
loaded with new data if it is in idle state (no ongoing transmission) or immediately after the last stop bit of
the previous frame is transmitted. When the Shift Register is loaded with new data, it will transfer one
complete frame at the rate given by the Baud Register, U2X bit or by XCK depending on mode of
operation.

The following code examples show a simple USART transmit function based on polling of the Data
Register Empty (UDRE) Flag. When using frames with less than eight bits, the most significant bits
written to the UDR are ignored. The USART has to be initialized before the function can be used. For the
assembly code, the data to be sent is assumed to be stored in Register R16.

Assembly Code Example!")

USART Transmit:
; Wait for empty transmit buffer
sbis UCSRA, UDRE
rjmp USART Transmit
; Put data (rl6) into buffer, sends the data
out UDR, rl6
ret

AtmeL Atmel ATmega32A [DATASHEET] 197

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

C Code Example!")

void USART Transmit(unsigned char data)

{
/* Wait for empty transmit buffer */
while (! (UCSRA & (1<<UDRE)))

/* Put data into buffer, sends the data */
UDR = data;
}

Note: 1. See About Code Examples.

The function simply waits for the transmit buffer to be empty by checking the UDRE Flag,
before loading it with new data to be transmitted. If the Data Register Empty Interrupt is
utilized, the interrupt routine writes the data into the buffer.

Related Links
About Code Examples on page 19

23.6.2. Sending Frames with 9 Data Bits
If 9-bit characters are used (UCSZ = 7), the ninth bit must be written to the TXB8 bit in UCSRB before the
Low byte of the character is written to UDR. The following code examples show a transmit function that
handles 9-bit characters. For the assembly code, the data to be sent is assumed to be stored in registers
R17:R16.

Atmel

Assembly Code Example!"

USART Transmit:
; Wait for empty transmit buffer

sbis UCSRA, UDRE

rjmp USART Transmit

; Copy 9th bit from rl7 to TXBS8

cbi UCSRB, TXB8

sbrc rl7,0

sbi UCSRB, TXB8

; Put LSB data (rl6) into buffer, sends the data
out UDR, rl6

ret

C Code Example!")

void USART Transmit(unsigned int data)

{
/* Wait for empty transmit buffer */
while (! (UCSRA & (1<<UDRE))))

/* Copy 9th bit to TXB8 */

UCSRB &= ~ (1<<TXB8) ;
if (data & 0x0100)
UCSRB |= (1<<TXBS8);

/* Put data into buffer, sends the data */
UDR = data;
}

Note: 1. These transmit functions are written to be general functions. They can be
optimized if the contents of the UCSRB is static. For example, only the TXB8 bit of the
UCSRB Register is used after initialization.

The ninth bit can be used for indicating an address frame when using multi processor
communication mode or for other protocol handling as for example synchronization.

Atmel ATmega32A [DATASHEET] 198
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

23.6.3.

23.6.4.

23.6.5.

23.71.

Transmitter Flags and Interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty (UDRE) and
Transmit Complete (TXC). Both flags can be used for generating interrupts.

The Data Register Empty (UDRE) Flag indicates whether the transmit buffer is ready to receive new data.
This bit is set when the transmit buffer is empty, and cleared when the transmit buffer contains data to be
transmitted that has not yet been moved into the Shift Register. For compatibility with future devices,
always write this bit to zero when writing the UCSRA Register.

When the Data Register empty Interrupt Enable (UDRIE) bit in UCSRB is written to one, the USART Data
Register Empty Interrupt will be executed as long as UDRE is set (provided that global interrupts are
enabled). UDRE is cleared by writing UDR. When interrupt-driven data transmission is used, the Data
Register empty Interrupt routine must either write new data to UDR in order to clear UDRE or disable the
Data Register empty Interrupt, otherwise a new interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXC) Flag bit is set one when the entire frame in the transmit Shift Register has
been shifted out and there are no new data currently present in the transmit buffer. The TXC Flag bit is
automatically cleared when a transmit complete interrupt is executed, or it can be cleared by writing a one
to its bit location. The TXC Flag is useful in half-duplex communication interfaces (like the RS485
standard), where a transmitting application must enter Receive mode and free the communication bus
immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIE) bit in UCSRB is set, the USART Transmit
Complete Interrupt will be executed when the TXC Flag becomes set (provided that global interrupts are
enabled). When the transmit complete interrupt is used, the interrupt handling routine does not have to
clear the TXC Flag, this is done automatically when the interrupt is executed.

Parity Generator

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled (UPM1
= 1), the Transmitter control logic inserts the parity bit between the last data bit and the first stop bit of the
frame that is sent.

Disabling the Transmitter

The disabling of the Transmitter (setting the TXEN to zero) will not become effective until ongoing and
pending transmissions are completed (i.e., when the Transmit Shift Register and Transmit Buffer Register
do not contain data to be transmitted). When disabled, the Transmitter will no longer override the TxD pin.

Data Reception — The USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXEN) bit in the UCSRB Register to
one. When the Receiver is enabled, the normal pin operation of the RxD pin is overridden by the USART
and given the function as the Receiver’s serial input. The baud rate, mode of operation and frame format
must be set up once before any serial reception can be done. If synchronous operation is used, the clock
on the XCK pin will be used as transfer clock.

Receiving Frames with 5 to 8 Data Bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start bit will be
sampled at the baud rate or XCK clock, and shifted into the Receive Shift Register until the first stop bit of
a frame is received. A second stop bit will be ignored by the Receiver. When the first stop bit is received
(i.e., a complete serial frame is present in the Receive Shift Register), the contents of the Shift Register
will be moved into the receive buffer. The receive buffer can then be read by reading the UDR 1/O
location.

AtmeL Atmel ATmega32A [DATASHEET] 199

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

23.7.2.

The following code example shows a simple USART receive function based on polling of the Receive
Complete (RXC) Flag. When using frames with less than eight bits the most significant bits of the data
read from the UDR will be masked to zero. The USART has to be initialized before the function can be
used.

Assembly Code Example!’)

USART Receive:
; Wait for data to be received
sbis UCSRA, RXC
rjmp USART Receive
; Get and return received data from buffer
in rl6, UDR
ret

C Code Example!")

unsigned char USART Receive(void)

{
/* Wait for data to be received */
while (! (UCSRA & (1<<RXC)))

;
/* Get and return received data from buffer */
return UDR;

}

Note: 1. See About Code Examples.

The function simply waits for data to be present in the receive buffer by checking the
RXC Flag, before reading the buffer and returning the value.

Related Links
About Code Examples on page 19

Receiving Frames with 9 Data Bits

If 9-bit characters are used (UCSZ=7) the ninth bit must be read from the RXB8 bit in UCSRB before
reading the low bits from the UDR. This rule applies to the FE, DOR and PE Status Flags as well. Read
status from UCSRA, then data from UDR. Reading the UDR 1/O location will change the state of the
receive buffer FIFO and consequently the TXB8, FE, DOR, and PE bits, which all are stored in the FIFO,
will change.

The following code example shows a simple USART receive function that handles both 9-bit characters
and the status bits.

Assembly Code Example!")

USART Receive:
; Wait for data to be received
sbis rl6, RXC
rjmp USART Receive
; Get status and 9th bit, then data from buffer

in rl8, UCSRA
in rl7, UCSRB
in rl6, UDR

; If error, return -1
andi rl8, (1<<FE) | (1<<DOR) | (1<<PE)
breq USART_ ReceiveNoError
1di rl7, HIGH(-1)
1di rlée, LOW(-1)
USART_ ReceiveNoError:
; Filter the 9th bit, then return

lsr rl7
andi rl7, 0x01
ret
AtmeL Atmel ATmega32A [DATASHEET] 200

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

23.7.3.

23.7.4.

C Code Example!")

unsigned int USART Receive(void)

{
unsigned char status, resh, resl;
/* Wait for data to be received */
while (! (UCSRA & (1<<RXC)))

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRA;

resh UCSRB;

resl UDR;

/* 1f error, return -1 */

if (status & (1<<FE) | (1<<DOR) | (1<<PE))
return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

Note: 1. See About Code Examples.

The receive function example reads all the I/O Registers into the Register File before any
computation is done. This gives an optimal receive buffer utilization since the buffer
location read will be free to accept new data as early as possible.

Related Links
About Code Examples on page 19

Receive Compete Flag and Interrupt
The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXC) Flag indicates if there are unread data present in the receive buffer. This
flag is one when unread data exist in the receive buffer, and zero when the receive buffer is empty (i.e.,
does not contain any unread data). If the Receiver is disabled (RXEN = 0), the receive buffer will be
flushed and consequently the RXC bit will become zero.

When the Receive Complete Interrupt Enable (RXCIE) in UCSRB is set, the USART Receive Complete
Interrupt will be executed as long as the RXC Flag is set (provided that global interrupts are enabled).
When interrupt-driven data reception is used, the receive complete routine must read the received data
from UDR in order to clear the RXC Flag, otherwise a new interrupt will occur once the interrupt routine
terminates.

Receiver Error Flags

The USART Receiver has three error flags: Frame Error (FE), Data OverRun (DOR) and Parity Error
(PE). All can be accessed by reading UCSRA. Common for the error flags is that they are located in the
receive buffer together with the frame for which they indicate the error status. Due to the buffering of the
error flags, the UCSRA must be read before the receive buffer (UDR), since reading the UDR 1/O location
changes the buffer read location. Another equality for the error flags is that they can not be altered by
software doing a write to the flag location. However, all flags must be set to zero when the UCSRA is
written for upward compatibility of future USART implementations. None of the error flags can generate
interrupts.

The Frame Error (FE) Flag indicates the state of the first stop bit of the next readable frame stored in the
receive buffer. The FE Flag is zero when the stop bit was correctly read (as one), and the FE Flag will be
one when the stop bit was incorrect (zero). This flag can be used for detecting out-of-sync conditions,
detecting break conditions and protocol handling. The FE Flag is not affected by the setting of the USBS
bit in UCSRC since the Receiver ignores all, except for the first, stop bits. For compatibility with future
devices, always set this bit to zero when writing to UCSRA.

AtmeL Atmel ATmega32A [DATASHEET] 201

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

The Data OverRun (DOR) Flag indicates data loss due to a Receiver buffer full condition. A Data
OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in the
Receive Shift Register, and a new start bit is detected. If the DOR Flag is set there was one or more serial
frame lost between the frame last read from UDR, and the next frame read from UDR. For compatibility
with future devices, always write this bit to zero when writing to UCSRA. The DOR Flag is cleared when
the frame received was successfully moved from the Shift Register to the receive buffer.

The Parity Error (PE) Flag indicates that the next frame in the receive buffer had a parity error when
received. If parity check is not enabled the PE bit will always be read zero. For compatibility with future
devices, always set this bit to zero when writing to UCSRA. For more details see Parity Bit Calculation
and Parity Checker.

23.7.5. Parity Checker
The Parity Checker is active when the high USART Parity mode (UPM1) bit is set. Type of parity check to
be performed (odd or even) is selected by the UPMO bit. When enabled, the Parity Checker calculates the
parity of the data bits in incoming frames and compares the result with the parity bit from the serial frame.
The result of the check is stored in the receive buffer together with the received data and stop bits. The
Parity Error (UPE) Flag can then be read by software to check if the frame had a parity error.
The UPE bit is set if the next character that can be read from the receive buffer had a parity error when
received and the parity checking was enabled at that point (UPM1 = 1). This bit is valid until the receive
buffer (UDR) is read.
23.7.6. Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions
will therefore be lost. When disabled (i.e., the RXEN is set to zero) the Receiver will no longer override
the normal function of the RxD port pin. The Receiver buffer FIFO will be flushed when the Receiver is
disabled. Remaining data in the buffer will be lost.
23.7.7. Flushing the Receive Buffer
The Receiver buffer FIFO will be flushed when the Receiver is disabled (i.e., the buffer will be emptied of
its contents). Unread data will be lost. If the buffer has to be flushed during normal operation, due to for
instance an error condition, read the UDR 1/O location until the RXC Flag is cleared. The following code
example shows how to flush the receive buffer.
Assembly Code Example!")
USART Flush:
sbis rl6, RXC
ret
in rl6, UDR
rijmp USART Flush
C Code Example!")
void USART Flush(void)
{
unsigned char dummy;
while (UCSRA & (1<<RXC)) dummy = UDR;
}
Note: 1. See About Code Examples.
Related Links
About Code Examples on page 19
AtmeL Atmel ATmega32A [DATASHEET] 202

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

23.8.1.

23.8.2.

Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception.
The clock recovery logic is used for synchronizing the internally generated baud rate clock to the
incoming asynchronous serial frames at the RxD pin. The data recovery logic samples and low pass
filters each incoming bit, thereby improving the noise immunity of the Receiver. The asynchronous
reception operational range depends on the accuracy of the internal baud rate clock, the rate of the
incoming frames, and the frame size in number of bits.

Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. The figure below
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times the
baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The horizontal arrows
illustrate the synchronization variation due to the sampling process. Note the larger time variation when
using the Double Speed mode (U2X = 1) of operation. Samples denoted zero are samples done when the
RxD line is idle (i.e., no communication activity).

Figure 23-5. Start Bit Sampling

RxD IDLE START /" BITO
Sample T T }4’1 T T
4

(U2X = 0) o 1 2 3
2

0
Sample T k—t—»(
0

(U2x=1) 1

NREHEREREN !
A L

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the start bit
detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in the figure. The
clock recovery logic then uses samples 8, 9 and 10 for Normal mode, and samples 4, 5 and 6 for Double
Speed mode (indicated with sample numbers inside boxes on the figure), to decide if a valid start bit is
received. If two or more of these three samples have logical high levels (the majority wins), the start bit is
rejected as a noise spike and the Receiver starts looking for the next high to low-transition. If however, a
valid start bit is detected, the clock recovery logic is synchronized and the data recovery can begin. The
synchronization process is repeated for each start bit.

Asynchronous Data Recovery

When the Receiver clock is synchronized to the start bit, the data recovery can begin. The data recovery
unit uses a state machine that has 16 states for each bit in Normal mode and eight states for each bit in

Double Speed mode. The following figure shows the sampling of the data bits and the parity bit. Each of
the samples is given a number that is equal to the state of the recovery unit.

Figure 23-6. Sampling of Data and Parity Bit

RxD >< BIT n ><
!

Sttt Pttt

(U2X = 0) 1 2 3 4 5 78] 9of1o]n 12 13 14 15 16
Sample F—t—ﬂ T T T T T
2 3 7 8 1

(U2X =1) 1
The decision of the logic level of the received bit is taken by doing a majority voting of the logic value to
the three samples in the center of the received bit. The center samples are emphasized on the figure by

(2]

AtmeL Atmel ATmega32A [DATASHEET] 203

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

23.8.3.

having the sample number inside boxes. The majority voting process is done as follows: If two or all three
samples have high levels, the received bit is registered to be a logic 1. If two or all three samples have
low levels, the received bit is registered to be a logic 0. This majority voting process acts as a low pass
filter for the incoming signal on the RxD pin. The recovery process is then repeated until a complete
frame is received. Including the first stop bit. Note that the Receiver only uses the first stop bit of a frame.

The following figure shows the sampling of the stop bit and the earliest possible beginning of the start bit
of the next frame.

Figure 23-7. Stop Bit Sampling and Next Start Bit Sampling

N N N
RxD / STOP 1 (A) (®) ©
AN AN
Sample }4»{ T T T T

(U2X=0) 12 4 5 6 7 [8]9J1o]or o1 on
3

1
S S T T

(uzx=1) 1
The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop bit is
registered to have a logic 0 value, the Frame Error (FE) Flag will be set.

A new high to low transition indicating the start bit of a new frame can come right after the last of the bits

used for majority voting. For Normal Speed mode, the first low level sample can be at point marked (A) in
the figure above. For Double Speed mode the first low level must be delayed to (B). (C) marks a stop bit

of full length. The early start bit detection influences the operational range of the Receiver.

Asynchronous Operational Range

The operational range of the Receiver is dependent on the mismatch between the received bit rate and
the internally generated baud rate. If the Transmitter is sending frames at too fast or too slow bit rates, or
the internally generated baud rate of the Receiver does not have a similar (refer to next table) base
frequency, the Receiver will not be able to synchronize the frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal receiver
baud rate.

___ +1s R —__(D+2)s
slow = §—1+D-S+S; fast = (D + 1)S + Sy,

R

Sum of character size and parity size (D = 5- to 10-bit).
Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed mode.

Sk First sample number used for majority voting. Sg = 8 for Normal Speed and Sg = 4 for Double
Speed mode.

Sm Middle sample number used for majority voting. Sy, = 9 for Normal Speed and Sy, = 5 for Double
Speed mode.

Rgiow is the ratio of the slowest incoming data rate that can be accepted in relation to the Receiver
baud rate.

Rsast is the ratio of the fastest incoming data rate that can be accepted in relation to the Receiver baud
rate.

The following tables list the maximum receiver baud rate error that can be tolerated. Note that Normal
Speed mode has higher toleration of baud rate variations.

AtmeL Atmel ATmega32A [DATASHEET] 204

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 23-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode (U2X = 0)

© o0 N O

10

Table 23-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode (U2X = 1)

Rsiow [%] R¢ast [%] Max Total Error [%] Recommended Max
(Data+Parity Bit) Receiver Error [%]

© 0 N O

10

93.20
94.12
94.81
95.36
95.81
96.17

106.67
105.79
105.11
104.58
104.14
103.78

94.12
94.92
95.52
96.00
96.39
96.70

+6.67/-6.8

+5.79/-5.88
+5.11/-56.19
+4.58/-4.54
+4.14/-4.19
+3.78/-3.83

105.66
104.92
104.35
103.90
103.53
103.23

3.0
2.5
2.0
2.0
1.5
1.5

+5.66/-5.88
+4.92/-5.08
+4.35/-4.48
+3.90/-4.00
+3.53/-3.61
+3.23/-3.30

2.5
2.0
1.5
1.5
1.5
+1.0

Rsiow [%] | Reast [%] | Max. Total Error [%] | Recommended Max Receiver Error
(Data+Parity Bit) [%]

The recommendations of the maximum Receiver baud rate error was made under the assumption that
the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the Receivers Baud Rate error. The Receiver’s system clock (XTAL)
will always have some minor instability over the supply voltage range and the temperature range. When
using a crystal to generate the system clock, this is rarely a problem, but for a resonator the system clock
may differ more than 2% depending of the resonators tolerance. The second source for the error is more
controllable. The baud rate generator can not always do an exact division of the system frequency to get

the baud rate wanted. In this case an UBRR value that gives an acceptable low error can be used if
possible.

23.9. Multi-Processor Communication Mode

Setting the Multi-processor Communication mode (MPCM) bit in UCSRA enables a filtering function of
incoming frames received by the USART Receiver. Frames that do not contain address information will

be ignored and not put into the receive buffer. This effectively reduces the number of incoming frames

that has to be handled by the CPU, in a system with multiple MCUs that communicate via the same serial
bus. The Transmitter is unaffected by the MPCM setting, but has to be used differently when it is a part of
a system utilizing the Multi-processor Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indicates if

the frame contains data or address information. If the Receiver is set up for frames with nine data bits,
then the ninth bit (RXB8) is used for identifying address and data frames. When the frame type bit (the

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

205

23.91.

23.10.

23.10.1.

first stop or the ninth bit) is one, the frame contains an address. When the frame type bit is zero the frame
is a data frame.

The Multi-processor Communication mode enables several Slave MCUs to receive data from a Master

MCU. This is done by first decoding an address frame to find out which MCU has been addressed. If a

particular Slave MCU has been addressed, it will receive the following data frames as normal, while the
other Slave MCUs will ignore the received frames until another address frame is received.

Using MPCM

For an MCU to act as a Master MCU, it can use a 9-bit character frame format (UCSZ = 7). The ninth bit
(TXB8) must be set when an address frame (TXB8 = 1) or cleared when a data frame (TXB = 0) is being
transmitted. The Slave MCUs must in this case be set to use a 9-bit character frame format.

The following procedure should be used to exchange data in Multi-Processor Communication Mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCM in UCSRA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. In the Slave
MCUs, the RXC Flag in UCSRA will be set as normal.

3. Each Slave MCU reads the UDR Register and determines if it has been selected. If so, it clears the
MPCM bit in UCSRA, otherwise it waits for the next address byte and keeps the MPCM setting.

4. The addressed MCU will receive all data frames until a new address frame is received. The other
Slave MCUs, which still have the MPCM bit set, will ignore the data frames.

5. When the last data frame is received by the addressed MCU, the addressed MCU sets the MPCM
bit and waits for a new address frame from Master. The process then repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the Receiver must
change between using n and n+1 character frame formats. This makes full-duplex operation difficult since
the Transmitter and Receiver uses the same character size setting. If 5- to 8-bit character frames are
used, the Transmitter must be set to use two stop bit (USBS = 1) since the first stop bit is used for
indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit. The MPCM bit
shares the same 1/O location as the TXC Flag and this might accidentally be cleared when using SBI or
CBIl instructions.

Accessing UBRRH/UCSRC Registers

The UBRRH Register shares the same 1/O location as the UCSRC Register. Therefore some special
consideration must be taken when accessing this I/O location.

Write Access

When doing a write access of this 1/O location, the high bit of the value written, the USART Register
Select (URSEL) bit, controls which one of the two registers that will be written. If URSEL is zero during a
write operation, the UBRRH value will be updated. If URSEL is one, the UCSRC setting will be updated.

The following code examples show how to access the two registers.

Assembly Code Example!")

; Set UBRRH to 2
1di rle,0x02
out UBRRH, rlé6

; Set the USBS and the UCSZ1 bit to one, and
; the remaining bits to zero.

AtmeL Atmel ATmega32A [DATASHEET] 206

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

23.10.2.

1di rlé, (1<<URSEL) | (1<<USBS) | (1<<UCSZ1)
out UCSRC, rlé

C Code Example!")

/* Set UBRRH to 2 */
UBRRH = 0x02;

/* Set the USBS and the UCSZl bit to one, and */
/* the remaining bits to zero. */
UCSRC = (1<<URSEL) (1<<USBS)

(1<<Uucszl) ;

Note: 1. See About Code Examples.

As the code examples illustrate, write accesses of the two registers are relatively
unaffected of the sharing of I/O location.

Related Links
About Code Examples on page 19

Read Access

Doing a read access to the UBRRH or the UCSRC Register is a more complex operation. However, in
most applications, it is rarely necessary to read any of these registers.

The read access is controlled by a timed sequence. Reading the 1/O location once returns the UBRRH
Register contents. If the register location was read in previous system clock cycle, reading the register in
the current clock cycle will return the UCSRC contents. Note that the timed sequence for reading the
UCSRC is an atomic operation. Interrupts must therefore be controlled (e.g., by disabling interrupts
globally) during the read operation.

The following code example shows how to read the UCSRC Register contents.

Assembly Code Example!"

USART_ReadUCSRC:
; Read UCSRC
in rl16, UBRRH
in rl6,UCSRC
ret

C Code Example!")

unsigned char USART ReadUCSRC(void)
{

unsigned char ucsrc;

/* Read UCSRC */

ucsrc UBRRH;

ucsrc UCSRC;

return ucsrc;

}

Note: 1. See About Code Examples.
The assembly code example returns the UCSRC value in r16.

Reading the UBRRH contents is not an atomic operation and therefore it can be read as
an ordinary register, as long as the previous instruction did not access the register
location.

Related Links

AtmeL Atmel ATmega32A [DATASHEET] 207

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

About Code Examples on page 19

23.11. Register Description

Atmel Atmel ATmega32A [DATASHEET] 208

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

23.111.

Bit

Access
Reset

UDR - USART I/O Data Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: UDR
Offset: 0x0C
Reset: 0x00
Property: When addressing I/O Registers as data space the offset address is 0x2C

7 6 5 4 3 2 1 0

TXB / RXB[7:0]
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0

Bits 7:0 — TXB / RXB[7:0]: USART Transmit / Receive Data Buffer

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the same
I/O address referred to as USART Data Register or UDR. The Transmit Data Buffer Register (TXB) will be
the destination for data written to the UDR Register location. Reading the UDR Register location will
return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set to zero by
the Receiver.

The transmit buffer can only be written when the UDRE Flag in the UCSRA Register is set. Data written
to UDR when the UDRE Flag is not set, will be ignored by the USART Transmitter. When data is written
to the transmit buffer, and the Transmitter is enabled, the Transmitter will load the data into the Transmit
Shift Register when the Shift Register is empty. Then the data will be serially transmitted on the TxD pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the receive
buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-Write instructions
(SBI and CBI) on this location. Be careful when using bit test instructions (SBIC and SBIS), since these
also will change the state of the FIFO.

AtmeL Atmel ATmega32A [DATASHEET] 209

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

23.11.2. UCSRA - USART Control and Status Register A
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
Name: UCSRA
Offset: 0x0B
Reset: 0x20
Property: When addressing I/O Registers as data space the offset address is 0x2B
Bit 7 6 5 4 3 2 1 0
RXC TXC UDRE FE DOR PE u2x MPCM
Access R R/W R R R R R/W R/W
Reset 0 0 1 0 0 0 0 0
Bit 7 — RXC: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the receive buffer is
empty (i.e. does not contain any unread data). If the Receiver is disabled, the receive buffer will be
flushed and consequently the RXC bit will become zero. The RXC Flag can be used to generate a
Receive Complete interrupt (see description of the RXCIE bit).
Bit 6 — TXC: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and there are
no new data currently present in the transmit buffer (UDR). The TXC Flag bit is automatically cleared
when a transmit complete interrupt is executed, or it can be cleared by writing a one to its bit location. The
TXC Flag can generate a Transmit Complete interrupt (see description of the TXCIE bit).
Bit 5 — UDRE: USART Data Register Empty
The UDRE Flag indicates if the transmit buffer (UDR) is ready to receive new data. If UDRE is one, the
buffer is empty, and therefore ready to be written. The UDRE Flag can generate a Data Register Empty
interrupt (see description of the UDRIE bit).
UDRE is set after a reset to indicate that the Transmitter is ready.
Bit 4 — FE: Frame Error
This bit is set if the next character in the receive buffer had a Frame Error when received (i.e., when the
first stop bit of the next character in the receive buffer is zero). This bit is valid until the receive buffer
(UDR) is read. The FE bit is zero when the stop bit of received data is one. Always set this bit to zero
when writing to UCSRA.
Bit 3 — DOR: Data OverRun
This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive buffer is
full (two characters), it is a new character waiting in the Receive Shift Register, and a new start bit is
detected. This bit is valid until the receive buffer (UDR) is read. Always set this bit to zero when writing to
UCSRA.
Bit 2 - PE: Parity Error
This bit is set if the next character in the receive buffer had a Parity Error when received and the parity
checking was enabled at that point (UPM1 = 1). This bit is valid until the receive buffer (UDR) is read.
Always set this bit to zero when writing to UCSRA.
AtmeL Atmel ATmega32A [DATASHEET] 210

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Bit 1 — U2X: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using synchronous
operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively doubling the
transfer rate for asynchronous communication.

Bit 0 —- MPCM: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCM bit is written to one, all the
incoming frames received by the USART Receiver that do not contain address information will be
ignored. The Transmitter is unaffected by the MPCM setting. For more detailed information see Multi-
processor Communication Mode.

AtmeL Atmel ATmega32A [DATASHEET] 211

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

23.11.3.

Bit

Access
Reset

UCSRB - USART Control and Status Register B

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: UCSRB

Offset: Ox0A

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x2A

7 6 5 4 3 2 1 0
RXCIE TXCIE UDRIE RXEN TXEN ucsz2 RXB8 TXB8
R/W RwW R/W R/W R/wW R/W R R/W
0 0 0 0 0 0 0 0

Bit 7 — RXCIE: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXC Flag. A USART Receive Complete interrupt will be
generated only if the RXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and
the RXC bit in UCSRA is set.

Bit 6 — TXCIE: TX Complete Interrupt Enable

Writing this bit to one enables interrupt on the TXC Flag. A USART Transmit Complete interrupt will be
generated only if the TXCIE bit is written to one, the Global Interrupt Flag in SREG is written to one and
the TXC bit in UCSRA is set.

Bit 5 — UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDRE Flag. A Data Register Empty interrupt will be
generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written to one and
the UDRE bit in UCSRA is set.

Bit 4 —- RXEN: Receiver Enable

Writing this bit to one enables the USART Receiver. The Receiver will override normal port operation for
the RxD pin when enabled. Disabling the Receiver will flush the receive buffer invalidating the FE, DOR
and PE Flags.

Bit 3 — TXEN: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port operation
for the TxD pin when enabled. The disabling of the Transmitter (writing TXEN to zero) will not become
effective until ongoing and pending transmissions are completed (i.e., when the Transmit Shift Register
and Transmit Buffer Register do not contain data to be transmitted). When disabled, the Transmitter will
no longer override the TxD port.

Bit 2 — UCSZ2: Character Size
The UCSZ2 bits combined with the UCSZ1:0 bit in UCSRC sets the number of data bits (Character Size)
in a frame the Receiver and Transmitter use.

Bit 1 — RXB8: Receive Data Bit 8
RXB8 is the ninth data bit of the received character when operating with serial frames with nine data bits.
Must be read before reading the low bits from UDR.

AtmeL Atmel ATmega32A [DATASHEET] 212

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Bit 0 — TXB8: Transmit Data Bit 8
TXB8 is the ninth data bit in the character to be transmitted when operating with serial frames with nine
data bits. Must be written before writing the low bits to UDR.

AtmeL Atmel ATmega32A [DATASHEET] 213

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

23.11.4. UCSRC - USART Control and Status Register C
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
The UCSRC Register shares the same 1/O location as the UBRRH Register. See the Accessing UBRRH/
UCSRC Registers section which describes how to access this register.
Name: UCSRC
Offset: 0x20
Reset: 0x06
Property: When addressing I/O Registers as data space the offset address is 0x40
Bit 7 6 5 4 3 2 1 0
URSEL UMSEL UPM1 UPMO USBS ucsz1 ucszo uUcPOL
Access R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 0 0 0 0 0 1 0
Bit 7 — URSEL: Register Select
This bit selects between accessing the UCSRC or the UBRRH Register. It is read as one when reading
UCSRC. The URSEL must be one when writing the UCSRC.
Bit 6 — UMSEL: Mode Select
This bit selects between Asynchronous and Synchronous mode of operation.
Table 23-4. UMSEL Bit Settings
0 Asynchronous Operation
1 Synchronous Operation

Bits 5:4 — UPMn: Parity Mode [n = 1:0]
These bits enable and set type of Parity Generation and Check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The Receiver
will generate a parity value for the incoming data and compare it to the UPMO setting. If a mismatch is
detected, the PE Flag in UCSRA will be set.
Table 23-5. UPM Bits Settings

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity
Bit 3 — USBS: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores this
setting.

AtmeL Atmel ATmega32A [DATASHEET] 214

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Table 23-6. USBS Bit Settings

T sop it

0 1-bit
1 2-bit

Bits 2:1 — UCSZn: Character Size [n = 1:0]
The UCSZ1:0 bits combined with the UCSZ2 bit in UCSRB sets the number of data bits (Character Size)
in a frame the Receiver and Transmitter use.

Table 23-7. UCSZ Bits Settings

UCSz2 ucsz1 UCSZz0 Character Size
0 0 0

5-bit
0 0 1 6-bit
0 1 0 7-bit
0 1 1 8-bit
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 9-bit

Bit 0 —- UCPOL: Clock Polarity

This bit is used for Synchronous mode only. Write this bit to zero when Asynchronous mode is used. The
UCPOL bit sets the relationship between data output change and data input sample, and the
synchronous clock (XCK).

Table 23-8. UCPOL Bit Settings

UCPOL| Transmitted Data Changed (Output of TxD Received Data Sampled (Input on RxD
Pin) Pin)

0 Rising XCK Edge Falling XCK Edge
1 Falling XCK Edge Rising XCK Edge
AtmeL Atmel ATmega32A [DATASHEET] 215

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

23.11.5. UBRRL - USART Baud Rate Register Low

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: UBRRL

Offset: 0x09

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x29

Bit 7 6 5 4 3 2 1 0
UBBR{[7:0]
Access RIW RIW RIW RIW RIW RIW RIW RIW
Reset 0 0 0 0 0 0 0 0

Bits 7:0 — UBBR[7:0]: USART Baud Rate Register

This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four most
significant bits, and the UBRRL contains the eight least significant bits of the USART baud rate. Ongoing
transmissions by the Transmitter and Receiver will be corrupted if the baud rate is changed. Writing
UBRRL will trigger an immediate update of the baud rate prescaler.

AtmeL Atmel ATmega32A [DATASHEET] 216

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

23.11.6. UBBRH - USART Baud Rate Register High
When using the 1/O specific commands IN and OUT, the 1/0 addresses 0x00 - Ox3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

The UBRRH Register shares the same 1/O location as the UCSRC Register. See the Accessing UBRRH/
UCSRC Registers section which describes how to access this register.

Name: UBBRH

Offset: 0x20

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x40

Bit 7 6 5 4 3 2 1 0
URSEL UBRR][3:0]
Access R/W R/W R/W R/W R/W
Reset 0 0 0 0 0

Bit 7 — URSEL: Register Select
This bit selects between accessing the UBRRH or the UCSRC Register. It is read as zero when reading
UBRRH. The URSEL must be zero when writing the UBRRH.

Bits 3:0 —- UBRR[3:0]: USART Baud Rate Register [n = 11:8]
Refer to UBRRL.

23.12. Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asynchronous
operation can be generated by using the UBRR settings as listed in the table below.

UBRR values which yield an actual baud rate differing less than 0.5% from the target baud rate, are bold
in the table. Higher error ratings are acceptable, but the Receiver will have less noise resistance when the
error ratings are high, especially for large serial frames (see Asynchronous Operational Range). The error
values are calculated using the following equation:

ETTOT[%] - (BaudRateClosest Match

— 0,
BaudRate 1) x100%

Table 23-9. Examples of UBRR Settings for Commonly Used Oscillator Frequencies

fosc = 1.0000MHz fosc = 1.8432MHz fose = 2.0000MHz

u2x=0 uz2x=1 U2x=0 uz2x=1 uz2x=20 uz2x=1
51 47

2400 25 0.2% 0.2% 0.0% 95 0.0% |51 0.2% 103 0.2%
4800 12 02% 25 02% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 02% |11 0.0% 23 0.0% (12 0.2% 25 0.2%
144k 3 85% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k |2 85% |6 -7.0% 5 0.0% 1 0.0% 6 -71.0% 12 0.2%
AtmeL Atmel ATmega32A [DATASHEET] 217

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

fosc = 1.0000MHz fosc = 1.8432MHz fosc = 2.0000MHz
U2X =0 U2X = 1 U2X = 1 U2X =0 U2X = 1

28.8k 8.5% 3 8.5% 0.0% 0.0% 8.5% 8 -3.5%
38.4k |1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
576k O 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k | — - 1 -18.6% 1 -25.0% |2 0.0% |1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% O 8.5% 1 8.5%
2304k |- - - - - — 0 0.0% - — - -
250k — - - - - - - — - — 0 0.0%
Max'") | 62.5kbps 125kbps 115.2kbps 230.4kbps 125kbps 250kbps

Note: 1. UBRR =0, Error = 0.0%

Table 23-10. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 3.6864MHz fosc = 4.0000MHz fosc = 7.3728MHz
u2X =0 u2X =1 U2X =0 u2X =1 u2X =0 u2X =1

2400 0.0% | 191 0.0% 103 0.2% 0.2% | 191 0.0% 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
144k 15 0.0% 31 0.0% 16 21% 34 -0.8% 31 0.0% 63 0.0%
192k M 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
288k 7 0.0% 15 0.0% 8 -3.5% 16 21% 15 0.0% 31 0.0%
38.4k |5 0.0% 11 0.0% |6 -7.0% 12 0.2% 11 0.0% 23 0.0%
576k 3 0.0% 7 0.0% 3 85% 8 -3.5% 7 0.0% 15 0.0%
76.8k |2 0.0% |5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%
115.2k 1 0.0% 3 0.0% 1 85% 3 85% 3 0.0% 7 0.0%
230.4k |0 0.0% 1 0.0% 0 8.5% 1 85% 1 0.0% '3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -71.8% 3 -7.8%
0.5M - - 0 -1.8% - - 0 0.0% O -71.8% 1 -7.8%
1M - - - — — — — - - — 0 -7.8%
Max.!") | 230.4kbps 460.8kbps 250kbps 0.5Mbps 460.8kbps 921.6kbps

Note: 1. UBRR =0, Error = 0.0%

AtmeL Atmel ATmega32A [DATASHEET] 218

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 23-11. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)
fosc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz

uzx=0 u2x =1 u2x =20 uz2x=1 uz2x =0 u2x =1

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%
4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%
9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% | 191 0.0%
144k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%
19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%
28.8k 16 21% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%
38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%
576k 8 -3.5% 16 21% 11 0.0% 23 0.0% 15 0.0% 31 0.0%
76.8k |6 -7.0% 12 0.2% |8 0.0% 17 0.0% 11 0.0% 23 0.0%
1152k 3 85% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%
230.4k |1 85% |3 8.5% |2 0.0% 5 0.0% '3 0.0% |7 0.0%
250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -71.8% 6 5.3%
0.5M 0 0.0% 1 0.0% - - 2 -7.8% 1 -7.8% 3 -7.8%
1M — - 0 0.0% - — — - 0 -7.8% 1 -7.8%
Max.'") 0.5Mbps 1Mbps 691.2kbps 1.3824Mbps 921.6kbps 1.8432Mbps

Note: 1. UBRR =0, Error = 0.0%

Table 23-12. Examples of UBRR Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 16.0000MHz fosc = 18.4320MHz fose = 20.0000MHz

U2X =1 U2X=0 u2x—o U2X =1

2400 416 -0.1% 0.0% 479 0.0% 0.0% 0.0% | 1041 0.0%
4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%
9600 103 0.2% | 207 0.2% 119 0.0% | 239 0.0% 129 0.2% 259 0.2%
144k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%
19.2k 51 0.2% 103 0.2% |59 0.0% 119 0.0% 64 0.2% 129 0.2%
288k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%
38.4k 25 0.2% | 51 0.2% |29 0.0% 59 0.0% |32 -1.4% 64 0.2%
57.6k 16 21% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%
76.8k 12 0.2% |25 0.2% |14 0.0% 29 0.0% |15 1.7% 32 -1.4%

AtmeL Atmel ATmega32A [DATASHEET] 219

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Baud |f,sc = 16.0000MHz fosc = 18.4320MHz fose = 20.0000MHz

Rate ‘mWMJ U2X = 1 JW\E

‘UBRR Error [UBRR |[Error |UBRR |[Error [UBRR |[Error [UBRR |Error |UBRR |Error

115.2k -3.5% 16 2.1% 0.0% 0.0% 10 -1.4% -1.4%
2304k |3 8.5% |8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%
250k 3 0.0% 7 0.0% 4 -7.8% 8 24% 4 0.0% 9 0.0%
0.5M 1 0.0% '3 0.0% |- — 4 -1.8% - — 4 0.0%
™M 0 0.0% 1 0.0% - — — - - — — —
Max.") 1Mbps 2Mbps 1.152Mbps 2.304Mbps 1.25Mbps 2.5Mbps

Note: 1. UBRR =0, Error = 0.0%

AtmeL Atmel ATmega32A [DATASHEET] 220

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

24, TWI - Two-wire Serial Interface

241. Features

+ Simple, yet Powerful and Flexible Communication Interface, only two Bus Lines Needed

* Both Master and Slave Operation Supported

» Device can Operate as Transmitter or Receiver

« 7-bit Address Space Allows up to 128 Different Slave Addresses

* Multi-master Arbitration Support

* Up to 400kHz Data Transfer Speed

e Slew-rate Limited Output Drivers

* Noise Suppression Circuitry Rejects Spikes on Bus Lines

* Fully Programmable Slave Address with General Call Support

* Address Recognition Causes Wake-up When AVR is in Sleep Mode
24.2. Overview

The TWI module is comprised of several submodules, as shown in the following figure. All registers
drawn in a thick line are accessible through the AVR data bus.

Figure 24-1. Overview of the TWI Module

SCL SDA

Sle w-rate Spike Sle w-rate Spik e
Control Filter Control Filter

4 A

/ /
Bus Interface Unit Bit Rate Gener ator
START / STOP . .
Control Spik e Suppression Prescaler
- Ll
Lo . Address/Data Shift Bit Rate Register
Arbitration detection Register (TWDR) Adk (TWBR)
A A A
A / 4
Address Match Unit Control Unit

Atmel

Address Register
(TWAR)

Address Compar ator

Status Register
(TWSR)

Control Register
(TWCR)

State Machine and
Status control

TWI Unit

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

24.21.

24.2.2.

24.2.3.

24.2.4,

SCL and SDA Pins

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a slew-
rate limiter in order to conform to the TWI specification. The input stages contain a spike suppression unit
removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR pads can be enabled by
setting the PORT bits corresponding to the SCL and SDA pins, as explained in the I/O Port section. The
internal pull-ups can in some systems eliminate the need for external ones.

Bit Rate Generator Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is controlled by
settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status Register (TWSR).
Slave operation does not depend on Bit Rate or Prescaler settings, but the CPU clock frequency in the
Slave must be at least 16 times higher than the SCL frequency. Note that slaves may prolong the SCL
low period, thereby reducing the average TWI bus clock period.

The SCL frequency is generated according to the following equation:

CPU Clock frequency
16 + 2(TWBR) - (PrescalerValue)
« TWBR = Value of the TWI Bit Rate Register

* PrescalerValue = Value of the prescaler, see description of the TWI Prescaler bit in the TWSR
Status Register description (TWSR.TWPS)

SCL frequency =

Note: Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus
line load. See the Two-Wire Serial Interface Characteristics for a suitable value of the pull-up resistor.

Related Links

Two-wire Serial Interface Characteristics on page 363

Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted, or the
address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also contains a
register containing the (N)ACK bit to be transmitted or received. This (N)ACK Register is not directly
accessible by the application software. However, when receiving, it can be set or cleared by manipulating
the TWI Control Register (TWCR). When in Transmitter mode, the value of the received (N)ACK bit can
be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED START,
and STOP conditions. The START/STOP controller is able to detect START and STOP conditions even
when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continuously
monitors the transmission trying to determine if arbitration is in process. If the TWI has lost an arbitration,
the Control Unit is informed. Correct action can then be taken and appropriate status codes generated.

Address Match Unit

The Address Match unit checks if received address bytes match the seven-bit address in the TWI
Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the TWAR is
written to one, all incoming address bits will also be compared against the General Call address. Upon an
address match, the Control Unit is informed, allowing correct action to be taken. The TWI may or may not
acknowledge its address, depending on settings in the TWCR. The Address Match unit is able to
compare addresses even when the AVR MCU is in sleep mode, enabling the MCU to wake up if
addressed by a Master. If another interrupt (e.g., INTO) occurs during TWI Power-down address match

AtmeL Atmel ATmega32A [DATASHEET] 222

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

and wakes up the CPU, the TWI aborts operation and return to it’s idle state. If this cause any problems,
ensure that TWI Address Match is the only enabled interrupt when entering Power-down.

24.2.5. Control Unit
The Control unit monitors the TWI bus and generates responses corresponding to settings in the TWI
Control Register (TWCR). When an event requiring the attention of the application occurs on the TWI
bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Status Register (TWSR)
is updated with a status code identifying the event. The TWSR only contains relevant status information
when the TWI Interrupt Flag is asserted. At all other times, the TWSR contains a special status code
indicating that no relevant status information is available. As long as the TWINT Flag is set, the SCL line
is held low. This allows the application software to complete its tasks before allowing the TWI
transmission to continue.
The TWINT Flag is set in the following situations:
« After the TWI has transmitted a START/REPEATED START condition.
* After the TWI has transmitted SLA+R/W.
« After the TWI has transmitted an address byte.
« After the TWI has lost arbitration.
« After the TWI has been addressed by own slave address or general call.
« After the TWI has received a data byte.
« Aftera STOP or REPEATED START has been received while still addressed as a Slave.
* When a bus error has occurred due to an illegal START or STOP condition.
24.3. Two-Wire Serial Interface Bus Definition
The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The TWI
protocol allows the systems designer to interconnect up to 128 different devices using only two bi-
directional bus lines, one for clock (SCL) and one for data (SDA). The only external hardware needed to
implement the bus is a single pullup resistor for each of the TWI bus lines. All devices connected to the
bus have individual addresses, and mechanisms for resolving bus contention are inherent in the TWI
protocol.
Figure 24-2. TWI Bus Interconnection
VCC
Device 1 Device 2 Device3 | - Device n RI1 R2
SDA - >
SCL -= P>
24.31. TWI Terminology
The following definitions are frequently encountered in this section.
AtmeL Atmel ATmega32A [DATASHEET] 223

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

24.3.2.

244,

24.41.

24.4.2,

Table 24-1. TWI Terminology

Master The device that initiates and terminates a transmission. The Master also generates the SCL clock.

Slave The device addressed by a Master.
Transmitter | The device placing data on the bus.

Receiver The device reading data from the bus.

Electrical Interconnection

As depicted in Figure 24-2, both bus lines are connected to the positive supply voltage through pull-up
resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector. This implements
a wired-AND function which is essential to the operation of the interface. A low level on a TWI bus line is
generated when one or more TWI devices output a zero. A high level is output when all TWI devices tri-
state their outputs, allowing the pull-up resistors to pull the line high. Note that all AVR devices connected
to the TWI bus must be powered in order to allow any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance limit of
400pF and the 7-bit slave address space. A detailed specification of the electrical characteristics of the
TWI is given in Two-wire Serial Interface Characteristics. Two different sets of specifications are
presented there, one relevant for bus speeds below 100kHz, and one valid for bus speeds up to 400kHz.
Related Links

Two-wire Serial Interface Characteristics on page 363

Data Transfer and Frame Format

Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level of the
data line must be stable when the clock line is high. The only exception to this rule is for generating start
and stop conditions.

Figure 24-3. Data Validity

SDA

SCL

Data Stab le Data Stab le

Data Change

START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the Master
issues a START condition on the bus, and it is terminated when the Master issues a STOP condition.
Between a START and a STOP condition, the bus is considered busy, and no other master should try to
seize control of the bus. A special case occurs when a new START condition is issued between a START

AtmeL Atmel ATmega32A [DATASHEET] 224

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

24.43.

and STOP condition. This is referred to as a REPEATED START condition, and is used when the Master
wishes to initiate a new transfer without relinquishing control of the bus. After a REPEATED START, the
bus is considered busy until the next STOP. This is identical to the START behavior, and therefore START
is used to describe both START and REPEATED START for the remainder of this datasheet, unless
otherwise noted. As depicted below, START and STOP conditions are signalled by changing the level of
the SDA line when the SCL line is high.

Figure 24-4. START, REPEATED START and STOP conditions

START STOP START REPEATED START STOP

Address Packet Format

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one READ/
WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read operation is to be
performed, otherwise a write operation should be performed. When a Slave recognizes that it is being
addressed, it should acknowledge by pulling SDA low in the ninth SCL (ACK) cycle. If the addressed
Slave is busy, or for some other reason can not service the Master’s request, the SDA line should be left
high in the ACK clock cycle. The Master can then transmit a STOP condition, or a REPEATED START
condition to initiate a new transmission. An address packet consisting of a slave address and a READ or
a WRITE bit is called SLA+R or SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the designer,
but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK cycle. A
general call is used when a Master wishes to transmit the same message to several slaves in the system.
When the general call address followed by a Write bit is transmitted on the bus, all slaves set up to
acknowledge the general call will pull the SDA line low in the ack cycle. The following data packets will
then be received by all the slaves that acknowledged the general call. Note that transmitting the general
call address followed by a Read bit is meaningless, as this would cause contention if several slaves
started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 24-5. Address Packet Format

Addr MSB Addr LSB

e s an an -
WaVavat

START

AtmeL Atmel ATmega32A [DATASHEET] 225

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

24.4.4,

24.4.5.

Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and an
acknowledge bit. During a data transfer, the Master generates the clock and the START and STOP
conditions, while the Receiver is responsible for acknowledging the reception. An Acknowledge (ACK) is
signalled by the Receiver pulling the SDA line low during the ninth SCL cycle. If the Receiver leaves the
SDA line high, a NACK is signalled. When the Receiver has received the last byte, or for some reason
cannot receive any more bytes, it should inform the Transmitter by sending a NACK after the final byte.
The MSB of the data byte is transmitted first.

Figure 24-6. Data Packet Format

Data MSB Data LSB ACK

|

|

. ! («

Aggregate N\ | >< KDX >< ><

SDA N

s P
SDA from N\ i ’ i

Tansmitter :‘L,l |

|

|

SDA from 7) o
Receiver /

SCL from
Master % o

Data Byte

STOP REPEATED
START or Next
Data Byte

Combining Address and Data Packets Into a Transmission

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets and a
STOP condition. An empty message, consisting of a START followed by a STOP condition, is illegal. Note
that the Wired-ANDing of the SCL line can be used to implement handshaking between the Master and
the Slave. The Slave can extend the SCL low period by pulling the SCL line low. This is useful if the clock
speed set up by the Master is too fast for the Slave, or the Slave needs extra time for processing between
the data transmissions. The Slave extending the SCL low period will not affect the SCL high period, which
is determined by the Master. As a consequence, the Slave can reduce the TWI data transfer speed by
prolonging the SCL duty cycle.

The following figure depicts a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol implemented by the
application software.

Figure 24-7. Typical Data Transmission

|
i Addr MSB AddrLSB R/W ACK Data MSB DataLSB ACK

START SLA+R/W Data Byte STOP

AtmeL Atmel ATmega32A [DATASHEET] 226

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

24.5.

Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken in order to
ensure that transmissions will proceed as normal, even if two or more masters initiate a transmission at
the same time. Two problems arise in multi-master systems:

* An algorithm must be implemented allowing only one of the masters to complete the transmission.
All other masters should cease transmission when they discover that they have lost the selection
process. This selection process is called arbitration. When a contending master discovers that it
has lost the arbitration process, it should immediately switch to Slave mode to check whether it is
being addressed by the winning master. The fact that multiple masters have started transmission at
the same time should not be detectable to the slaves, i.e. the data being transferred on the bus
must not be corrupted.

« Different masters may use different SCL frequencies. A scheme must be devised to synchronize
the serial clocks from all masters, in order to let the transmission proceed in a lockstep fashion.
This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from all
masters will be wired-ANDed, yielding a combined clock with a high period equal to the one from the
Master with the shortest high period. The low period of the combined clock is equal to the low period of
the Master with the longest low period. Note that all masters listen to the SCL line, effectively starting to
count their SCL high and low time-out periods when the combined SCL line goes high or low,
respectively.

Figure 24-8. SCL Synchronization Between Multiple Masters

! TlAlow ! ! TAhigh !
l——————» l——————»
\ \ \ \
\ \ \ \
\ | oo __
SCL from \ L,/ \ \
Master A ‘ L’ } }
\ \
TBlow TBhigh

|
|
SCL from :
Master B
|
|
|
|
|
|

I
I I
\ Masters Star t \ Masters Star t

Counting Lo w P eriod Counting High P eriod

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting data. If the
value read from the SDA line does not match the value the Master had output, it has lost the arbitration.
Note that a Master can only lose arbitration when it outputs a high SDA value while another Master
outputs a low value. The losing Master should immediately go to Slave mode, checking if it is being
addressed by the winning Master. The SDA line should be left high, but losing masters are allowed to
generate a clock signal until the end of the current data or address packet. Arbitration will continue until
only one Master remains, and this may take many bits. If several masters are trying to address the same
Slave, arbitration will continue into the data packet.

AtmeL Atmel ATmega32A [DATASHEET] 227

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

24.6.

Figure 24-9. Arbitration Between Two Masters

START Master A Loses
|| \ Arbitration, SD A, * SDA

SDA from
Master A & _

\
\
SDA from |
Master B m \ /—\—
|
T
\
\
|

Synchroniz ed
| | \
Note that arbitration is not allowed between:

« A REPEATED START condition and a data bit.
A STOP condition and a data bit.
« A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions never occur. This
implies that in multi-master systems, all data transfers must use the same composition of SLA+R/W and
data packets. In other words: All transmissions must contain the same number of data packets, otherwise
the result of the arbitration is undefined.

Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based, the
application software is free to carry on other operations during a TWI byte transfer. Note that the TWI
Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in SREG allow the
application to decide whether or not assertion of the TWINT Flag should generate an interrupt request. If
the TWIE bit is cleared, the application must poll the TWINT Flag in order to detect actions on the TWI
bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application response. In
this case, the TWI Status Register (TWSR) contains a value indicating the current state of the TWI bus.
The application software can then decide how the TWI should behave in the next TWI bus cycle by
manipulating the TWCR and TWDR Registers.

The following figure is a simple example of how the application can interface to the TWI hardware. In this
example, a Master wishes to transmit a single data byte to a Slave. This description is quite abstract, a
more detailed explanation follows later in this section. A simple code example implementing the desired
behavior is also presented.

AtmeL Atmel ATmega32A [DATASHEET] 228

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 24-10. Interfacing the Application to the TWI in a Typical Transmission

Application
Action

1.Application
writesto TWCRto
initiate
transmission of
START

3.Check TWSRto see if START was
sent. Application loads SLA+W into
TWDR, and loads appropriate control
signals into TWCR, making sure that
TWINT is written to one,
and TWSTA is written to zero.

5.Check TWSRto see if SLA+W was
sent and ACKreceived.
Application loads data into TWDR and
loads appropriate control signalsinto
TWCR making sure that TWINT is
written to one

7.Check TWSRto see if data was sent
and ACKreceived.
Application loads appropriate control
signalsto send STOPinto TWCR
making sure that TWINT iswritten to one

L

TWI bus

SA+W

Data

SI'OP‘

Indicates

4. TWINT set. TWINT set

Status code indicates
S A+W sent, ACK
received

2. TWINT set.
Satuscode indicates
START condition sent

6. TWINT set.
Satuscode indicates
data sent, ACKreceived

™I

Hardware
Action

—_

The first step in a TWI transmission is to transmit a START condition. This is done by writing a
specific value into TWCR, instructing the TWI hardware to transmit a START condition. Which value
to write is described later on. However, it is important that the TWINT bit is set in the value written.
Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT
bit in TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the START condition.

When the START condition has been transmitted, the TWINT Flag in TWCR is set, and TWSR is
updated with a status code indicating that the START condition has successfully been sent.

The application software should now examine the value of TWSR, to make sure that the START
condition was successfully transmitted. If TWSR indicates otherwise, the application software might
take some special action, like calling an error routine. Assuming that the status code is as
expected, the application must load SLA+W into TWDR. Remember that TWDR is used both for
address and data. After TWDR has been loaded with the desired SLA+W, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the SLA+W present in TWDR. Which
value to write is described later on. However, it is important that the TWINT bit is set in the value
written. Writing a one to TWINT clears the flag. The TWI will not start any operation as long as the
TWINT bit in TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.

When the address packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is
updated with a status code indicating that the address packet has successfully been sent. The
status code will also reflect whether a Slave acknowledged the packet or not.

The application software should now examine the value of TWSR, to make sure that the address
packet was successfully transmitted, and that the value of the ACK bit was as expected. If TWSR
indicates otherwise, the application software might take some special action, like calling an error
routine. Assuming that the status code is as expected, the application must load a data packet into
TWDR. Subsequently, a specific value must be written to TWCR, instructing the TWI hardware to
transmit the data packet present in TWDR. Which value to write is described later on. However, it is
important that the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The
TWI will not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR is
updated with a status code indicating that the data packet has successfully been sent. The status
code will also reflect whether a Slave acknowledged the packet or not.

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

229

Atmel

7. The application software should now examine the value of TWSR, to make sure that the data
packet was successfully transmitted, and that the value of the ACK bit was as expected. If TWSR
indicates otherwise, the application software might take some special action, like calling an error
routine. Assuming that the status code is as expected, the application must write a specific value to
TWCR, instructing the TWI hardware to transmit a STOP condition. Which value to write is
described later on. However, it is important that the TWINT bit is set in the value written. Writing a
one to TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the STOP condition. Note that TWINT is NOT set after a STOP condition has been
sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions. These can
be summarized as follows:

* When the TWI has finished an operation and expects application response, the TWINT Flag is set.
The SCL line is pulled low until TWINT is cleared.

* When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for the
next TWI bus cycle. As an example, TWDR must be loaded with the value to be transmitted in the
next bus cycle.

+ After all TWI Register updates and other pending application software tasks have been completed,
TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a one to TWINT clears
the flag. The TWI will then commence executing whatever operation was specified by the TWCR
setting.

The following table lists assembly and C implementation examples. Note that the code below assumes
that several definitions have been made, e.g. by using include-files.

Table 24-2. Assembly and C Code Example

_ Assembly code Example ¢ Example

1di rlé, (1<<TWINT)
1 (1<<TWEN)
out TWCR, rlé6

(1<<TWSTA) TWCR = (1<<TWINT)

(1<<TWSTA) | (1<<TWEN) Send START condition

waitl: Wait for TWINT Flag set. This indicates
in rl6, TWCR while (! (TWCR & -
2 sbrs rl6, TWINT (1<<TWINT))) ; that the START condition has been
rjmp waitl transmitted.
i Check value of TWI Status Register.
aiﬁfiffwﬁ’ips if ((TWSR & OxF8) != 9
) ! START) Mask prescaler bits. If status different
cpi rl6, START
ERROR() ;
brne ERROR from START go to ERROR.
3
; Load SLA_W into TWDR Register. Cl
lgitr%SBRSLiI{g TR = SLA7W; oa __VWinto egister. ear
1di 116, (1<<TWINT) | (1<<TWEN) TWCR Tléi;;ELV)INT) | TWINT bit in TWCR to start transmission
out TWCR, rlé6 ’ of address.
wait2: Wait for TWINT Flag set. This indicates
in rle6, TWCR while (! (TWCR & .
4 sbrs rl6, TWINT (1<<TWINT))) ; that the SLA+W has been transmitted,
rjmp wait2 and ACK/NACK has been received.
; Check value of TWI Status Register.
aiﬁiriféwﬁim if ((TWSR & OxF8) = vau us Red!
ool #16, i SIA ACK MT SLA ACK) Mask prescaler bits. If status different
o ERROR () ;
brne ERROR from MT_SLA_ACK go to ERROR.
5
i Load DATA into TWDR Register. Clear
g o - oaca; ;
1di r16, (L<<TWINT) | (1<<TWEN) TWCR Tléi;;qgg)INT) | TWINT bit in TWCR to start transmission

Atmel

out TWCR, rlé6

of data.

Atmel ATmega32A [DATASHEET] 230

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

_ Assembly code Example ¢ Example

wait3: Wait for TWINT Flag set. This indicates
6 sbl;s rr1166' TTW;%T Wh(l 1l<e<T%q!I(NTTW)C)R) _& that the DATA has been transmitted, and

rjmp wait3 ACK/NACK has been received.

in rl6, TWSR Check value of TWI Status Register.

andi rl6, OxF8 if ((TWSR & OxF8) !=
’

cpi rl6, MT DATA ACK MTJ:J‘EARTE%?(C)IQ Mask prescaler bits. If status different
7 brne ERROR ’ from MT_DATA_ACK go to ERROR.
1di rl6, (L<<TWINT) | (1<<TWEN) | TWCR = (1<<TWINT) |

(1<<TWSTO) Transmit STOP condition.

out TWCR, rl6 (1<<TWEN) | (1<<TWSTO) ;

24.6.1. Transmission Modes

The TWI can operate in one of four major modes:

¢ Master Transmitter (MT)

* Master Receiver (MR)

* Slave Transmitter (ST)

« Slave Receiver (SR)
Several of these modes can be used in the same application. As an example, the TWI can use MT mode
to write data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode would be
used. It is the application software that decides which modes are legal.
The following sections describe each of these modes. Possible status codes are described along with
figures detailing data transmission in each of the modes. These figures use the following abbreviations:
S START condition

Rs REPEATED START condition

R Read bit (high level at SDA)

w Write bit (low level at SDA)

A Acknowledge bit (low level at SDA)

A Not acknowledge bit (high level at SDA)

Data | 8-bit data byte

P STOP condition

SLA Slave Address
Circles are used to indicate that the TWINT Flag is set. The numbers in the circles show the status code
held in TWSR, with the prescaler bits masked to zero. At these points, actions must be taken by the
application to continue or complete the TWI transfer. The TWI transfer is suspended until the TWINT Flag
is cleared by software.
When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate software
action. For each status code, the required software action and details of the following serial transfer are
given below in the Status Code table for each mode. Note that the prescaler bits are masked to zero in
these tables.

AtmeL Atmel ATmega32A [DATASHEET] 231

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

24.6.2.

Master Transmitter Mode

In the Master Transmitter (MT) mode, a number of data bytes are transmitted to a Slave Receiver, see
figure below. In order to enter a Master mode, a START condition must be transmitted. The format of the
following address packet determines whether MT or Master Receiver (MR) mode is to be entered: If SLA
+W is transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is entered. All the status codes
mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Figure 24-11. Data Transfer in Master Transmitter Mode

VCC
Device 1 Device 2 .
MASTER SLAVE Device3 | ... Device n R1 R2
TRANSMITTER RECEIVER
A A
SDA Y
SCL Y

A START condition is sent by writing a value to the TWI Control Register (TWCR) of the type
TWCR=1x10x10x:

* The TWI Enable bit (TWCR.TWEN) must be written to '1' to enable the 2-wire Serial Interface
* The TWI Start Condition bit (TWCR.TWSTA) must be written to '1' to transmit a START condition
e The TWI Interrupt Flag (TWCR.TWINT) must be written to '1' to clear the flag.

The TWI will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and
the status code in TWSR will be 0x08 (see Status Code table below). In order to enter MT mode, SLA+W
must be transmitted. This is done by writing SLA+W to the TWI Data Register (TWDR). Thereafter, the
TWCR.TWINT Flag should be cleared (by writing a '1' to it) to continue the transfer. This is accomplished
by writing a value to TWRC of the type TWCR=1x00x10x.

When SLA+W have been transmitted and an acknowledgment bit has been received, TWINT is set again
and a number of status codes in TWSR are possible. Possible status codes in Master mode are 0x18,
0x20, or 0x38. The appropriate action to be taken for each of these status codes is detailed in the Status
Code table below.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is done by
writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not, the access will be
discarded, and the Write Collision bit (TWWC) will be set in the TWCR Register. After updating TWDR,
the TWINT bit should be cleared (by writing '1' to it) to continue the transfer. This is accomplished by
writing again a value to TWCR of the type TWCR=1x00x10x.

This scheme is repeated until the last byte has been sent and the transfer is ended, either by generating
a STOP condition or a by a repeated START condition. A repeated START condition is accomplished by
writing a regular START value TWCR=1x10x10x. A STOP condition is generated by writing a value of the
type TWCR=1x01x10x.

After a repeated START condition (status code 0x10), the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables the Master

AtmeL Atmel ATmega32A [DATASHEET] 232

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

to switch between Slaves, Master Transmitter mode and Master Receiver mode without losing control of
the bus.

Table 24-3. Status Codes for Master Transmitter Mode

Application Software Response

To/from TWDR

Status Code
(TWSR)

Prescaler Bits
are 0

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

To TWCR

Next Action Taken by TWI Hardware

0x08 A START condition has been Load SLA+W 0 0 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition has Load SLA+W or 0 0 X SLA+W will be transmitted;
been transmitted Load SLA+R 0 0 X ACK or NOT ACK will be received
SLA+R will be transmitted;
Logic will switch to Master Receiver mode
0x18 SLA+W has been transmitted; Load data byte or 0 0 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received No TWDR action or 1 0 X be received
No TWDR action or 0 1 % Repeated START will be transmitted
No TWDR action 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x20 SLA+W has been transmitted; Load data byte or 0 0 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received No TWDR action or 1 0 X be received
No TWDR action or 0 1 % Repeated START will be transmitted
No TWDR action 1 1 % STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x28 Data byte has been transmitted; Load data byte or 0 0 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received No TWDR action or 1 0 X be received
No TWDR action or 0 1 % Repeated START will be transmitted
No TWDR action 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x30 Data byte has been transmitted; Load data byte or 0 0 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received No TWDR action or 1 0 X be received
No TWDR action or 0 1 % Repeated START will be transmitted
No TWDR action 1 1 % STOP condition will be transmitted and
TWSTO Flag will be reset
STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x38 Arbitration lost in SLA+W or data = No TWDR action or 0 0 X 2-wire Serial Bus will be released and not addressed
bytes No TWDR action 1 0 X Slave mode entered

A START condition will be transmitted when the bus
becomes free

Atmel ATmega32A [DATASHEET] 233
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Atmel

Figure 24-12. Formats and States in the Master Transmitter Mode
MT

Successfull
transmission S

SLA

A DATA

to asla ve
receiv er

$08

Next transfer
started with a
repeated star t
condition

Not acknowledge
received after the
slave address

Not acknowledge
receiv ed after a data

byte

Arbitration lost in sla ve
address or datab yte

Arbitration lost and
addressed as sla ve

$18

$28

Rs SLA ! W

>l
o

Other master
contin ues

AorA

\

Y

Other master
continues

AorA

$38

Y

A Other master
contin ues

Y

Y

$38

To corresponding
states in sla ve mode

From master to sla ve

From sla ve to master

24.6.3. Master Receiver Mode

Any number of datab ytes
and their associated ac knowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Ser ial Bus The
prescaler bits are z ero or mask ed to z ero

In the Master Receiver (MR) mode, a number of data bytes are received from a Slave Transmitter (see
next figure). In order to enter a Master mode, a START condition must be transmitted. The format of the
following address packet determines whether Master Transmitter (MT) or MR mode is to be entered. If
SLA+W is transmitted, MT mode is entered, if SLA+R is transmitted, MR mode is entered. All the status
codes mentioned in this section assume that the prescaler bits are zero or are masked to zero.

Atmel

Atmel ATmega32A [DATASHEET] 234
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 24-13. Data Transfer in Master Receiver Mode

cC
Device 1 Device 2 . .
MASTER SLAVE Device3 | Device n R1 R2
RECEIVER TRANSMITTER
A A
SDA y
SCL Y

A START condition is sent by writing to the TWI Control register (TWCR) a value of the type
TWCR=1x10x10x:

¢ TWCR.TWEN must be written to '1' to enable the 2-wire Serial Interface
« TWCR.TWSTA must be written to '1' to transmit a START condition
« TWCR.TWINT must be cleared by writing a '1' to it.

The TWI will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and
the status code in TWSR will be 0x08 (see Status Code table below). In order to enter MR mode, SLA+R
must be transmitted. This is done by writing SLA+R to TWDR. Thereafter, the TWINT flag should be
cleared (by writing '1' to it) to continue the transfer. This is accomplished by writing the a value to TWCR
of the type TWCE=1x00x10x.

When SLA+R have been transmitted and an acknowledgment bit has been received, TWINT is set again
and a number of status codes in TWSR are possible. Possible status codes in Master mode are 0x38,
0x40, or 0x48. The appropriate action to be taken for each of these status codes is detailed in the table
below. Received data can be read from the TWDR Register when the TWINT Flag is set high by
hardware. This scheme is repeated until the last byte has been received. After the last byte has been
received, the MR should inform the ST by sending a NACK after the last received data byte. The transfer
is ended by generating a STOP condition or a repeated START condition. A repeated START condition is
sent by writing to the TWI Control register (TWCR) a value of the type TWCR=1x10x10x again. A STOP
condition is generated by writing TWCR=1xx01x10x:

After a repeated START condition (status code 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables the Master
to switch between Slaves, Master Transmitter mode and Master Receiver mode without losing control
over the bus.

AtmeL Atmel ATmega32A [DATASHEET] 235

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 24-4. Status codes for Master Receiver Mode

Status Code
(TWSR)

Prescaler Bits
are 0

0x08

0x10

0x38

0x40

0x48

0x50

0x58

Atmel

Status of the 2-wire Serial Bus
and 2-wire Serial Interface
Hardware

A START condition has been
transmitted

A repeated START condition has
been transmitted

Arbitration lost in SLA+R or NOT
ACK bit

SLA+R has been transmitted;
ACK has been received

SLA+R has been transmitted;
NOT ACK has been received

Data byte has been received;
ACK has been returned

Data byte has been received;
NOT ACK has been returned

Application Software Response

Tol/from TWD

Load SLA+R

Load SLA+R or
Load SLA+W

No TWDR action or
No TWDR action

No TWDR action or
No TWDR action

No TWDR action or
No TWDR action or

No TWDR action

Read data byte or
Read data byte

Read data byte or
Read data byte or

Read data byte

x X

X X

Next Action Taken by TWI Hardware

SLA+R will be transmitted
ACK or NOT ACK will be received

SLA+R will be transmitted

ACK or NOT ACK will be received

SLA+W will be transmitted

Logic will switch to Master Transmitter mode

2-wire Serial Bus will be released and not addressed

Slave mode will be entered
A START condition will be transmitted when the bus

becomes free

Data byte will be received and NOT ACK will be
returned

Data byte will be received and ACK will be returned
Repeated START will be transmitted

STOP condition will be transmitted and TWSTO Flag
will be reset

STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

Data byte will be received and NOT ACK will be
returned

Data byte will be received and ACK will be returned
Repeated START will be transmitted

STOP condition will be transmitted and TWSTO Flag
will be reset

STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

Atmel ATmega32A [DATASHEET] 236

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

24.6.4.

Figure 24-14. Formats and States in the Master Receiver Mode

MR
Successfull oo —
reception S SLA R A DATA A DATA A P
fromaslave .
receiv er
508 $40 @ $58
Next transf er !
started with a Rg SLA i R
repeated star t
condition
Not ac knowledge — W
received after the A P
slave address
$48
MT
Arbitration lost in sla ve — Other master — Other master
address or datab yte AorA contin ues A contin ues
$38 $38
Arbitration lost and Other master
addressed as sla ve A contin ues

To corresponding
states in sla ve mode

E From master to sla ve

Slave Receiver Mode

From slave to master

[e
@

Any number of datab ytes
and their associated ac knowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Ser ial Bus The
prescaler bits are z ero or mask ed to z ero

In the Slave Receiver (SR) mode, a number of data bytes are received from a Master Transmitter (see
figure below). All the status codes mentioned in this section assume that the prescaler bits are zero or are

masked to zero.

Atmel

Atmel ATmega32A [DATASHEET] 237

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 24-15. Data transfer in Slave Receiver mode

cc
Device 1 Device 2 . .
SLAVE MASTER Device3 | Device n R1 R2
RECEIVER TRANSMITTER
A A
SDA y
SCL \

To initiate the SR mode, the TWI (Slave) Address Register (TWAR) and the TWI Control Register
(TWCR) must be initialized as follows:

The upper seven bits of TWAR are the address to which the 2-wire Serial Interface will respond when
addressed by a Master (TWAR.TWA[6:0]). If the LSB of TWAR is written to TWAR. TWGCI=1, the TWI will
respond to the general call address (0x00), otherwise it will ignore the general call address.

TWCR must hold a value of the type TWCR=0100010x - TWCR.TWEN must be written to '1' to enable
the TWI. TWCR.TWEA bit must be written to '1' to enable the acknowledgement of the device’s own slave
address or the general call address. TWCR.TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave
address (or the general call address, if enabled) followed by the data direction bit. If the direction bit is '0’
(write), the TWI will operate in SR mode, otherwise ST mode is entered. After its own slave address and
the write bit have been received, the TWINT Flag is set and a valid status code can be read from TWSR.
The status code is used to determine the appropriate software action, as detailed in the table below. The
SR mode may also be entered if arbitration is lost while the TWI is in the Master mode (see states 0x68
and 0x78).

If the TWCR.TWEA bit is reset during a transfer, the TWI will return a "Not Acknowledge" ('1') to SDA
after the next received data byte. This can be used to indicate that the Slave is not able to receive any
more bytes. While TWEA is zero, the TWI does not acknowledge its own slave address. However, the 2-
wire Serial Bus is still monitored and address recognition may resume at any time by setting TWEA. This
implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set,
the interface can still acknowledge its own slave address or the general call address by using the 2-wire
Serial Bus clock as a clock source. The part will then wake up from sleep and the TWI will hold the SCL
clock low during the wake up and until the TWINT Flag is cleared (by writing '1' to it). Further data
reception will be carried out as normal, with the AVR clocks running as normal. Observe that if the AVR is
set up with a long start-up time, the SCL line may be held low for a long time, blocking other data
transmissions.

Note: The 2-wire Serial Interface Data Register (TWDR) does not reflect the last byte present on the bus
when waking up from these Sleep modes.

AtmeL Atmel ATmega32A [DATASHEET] 238

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 24-5. Status Codes for Slave Receiver Mode

Status of the 2-wire Serial Application Software Response Next Action Taken by TWI Hardware

Status
Code
(TWSR)

Prescaler
Bits are 0

0x60

0x68

0x70

0x78

0x80

0x88

0x90

Bus and 2-wire Serial

Interface Hardware Tolfrom TWDR

STA | STO | TWI | TWE
NT

Own SLA+W has been No TWDR action | X
received; or X
ACK has been returned No TWDR action

Arbitration lost in SLA+R/W No TWDR action X

as Master; own SLA+W has or X
been No TWDR action
received; ACK has been

returned

General call address has No TWDR action | X
been or X
received; ACK has been No TWDR action
returned

Arbitration lost in SLA+R/W No TWDR action X
as Master; General call or X
address has been received; No TWDR action
ACK has been returned

Previously addressed with Read data byte or | X
own SLA+W; data has been Read data byte X
received; ACK has been
returned
Previously addressed with Read data byte or 0
own SLA+W; data has been Read data byte or 0
received; NOT ACK has been Read data byte or | 1
returned

Read data byte 1
Previously addressed with Read data byte or | X

general call; data has been Read data byte X
received; ACK has been
returned

Atmel

0 1 0 Data byte will be received and NOT ACK will be
0 1 1 returned
Data byte will be received and ACK will be returned

0 1 0 Data byte will be received and NOT ACK will be
0 1 1 returned
Data byte will be received and ACK will be returned

0 1 0 Data byte will be received and NOT ACK will be
0 1 1 returned
Data byte will be received and ACK will be returned

0 1 0 Data byte will be received and NOT ACK will be
0 1 1 returned
Data byte will be received and ACK will be returned

0 1 0 Data byte will be received and NOT ACK will be
1 1 returned
Data byte will be received and ACK will be returned

0 1 0 Switched to the not addressed Slave mode;
0 1 1 no recognition of own SLA or GCA

0 1 0 Switched to the not addressed Slave mode;
0 1 1 own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”; a START
condition will be transmitted when the bus becomes
free

0 1 0 Data byte will be received and NOT ACK will be
0 1 1 returned

Data byte will be received and ACK will be returned

Atmel ATmega32A [DATASHEET] 239

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Status Status of the 2-wire Serial Next Action Taken by TWI Hardware
Code Bus and 2-wire Serial

(TWSR) Interface Hardware DL 1 21

Prescaler STA | STO | TWI

Bits are 0 eh

0x98 Previously addressed with Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
general call; data has been Read data byte or 0 0 1 1 no recognition of own SLA or GCA
received; NOT ACK has been | Read data byte or | 1 0 1 0 Switched to the not addressed Slave mode;
returned Read data byte 1 0 1 1 own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA,;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”; a START
condition will be transmitted when the bus becomes
free
0xA0 A STOP condition or repeated | No action 0 0 1 0 Switched to the not addressed Slave mode;
START condition has been 0 0 1 1 no recognition of own SLA or GCA
e vile il 2eelEased 1 0 1 0 Switched to the not addressed Slave mode;
as Slave
1 0 1 1 own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA,;
a START condition will be transmitted when the bus
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”; a START
condition will be transmitted when the bus becomes
free
AtmeL Atmel ATmega32A [DATASHEET] 240

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 24-16. Formats and States in the Slave Receiver Mode

Reception of the o wn

1

sla ve address and one or S SLA 1 W A
more data b ytes All are *
acknowledged

$60
Last datab yte receiv ed
is not ac knowledged
Arbitration lost as master
and addressed as sla ve A

$68
Reception of the gener al call
address and one or more data General Call A

bytes

Last data b yte receiv ed is
not ac knowledged

Arbitration lost as master and
addressed as sla ve by gener al call

$78

DATA

$88

| A | DATA A |P0rS |

$90 $90 $A0

>

$98

From master to sla ve

I:I From sla ve to master

24.6.5. Slave Transmitter Mode

Any number of data b ytes
and their associated ac knowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Ser ial Bus The
prescaler bits are z ero or mask ed to z ero

In the Slave Transmitter (ST) mode, a number of data bytes are transmitted to a Master Receiver, as in
the figure below. All the status codes mentioned in this section assume that the prescaler bits are zero or

are masked to zero.

Atmel

Atmel ATmega32A [DATASHEET] 241
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 24-17. Data Transfer in Slave Transmitter Mode

cc
Device 1 Device 2 . .
SLAVE MASTER Device3 | Device n R1 R2
TRANSMITTER RECEIVER
A A
SDA Y
SCL \

To initiate the SR mode, the TWI (Slave) Address Register (TWAR) and the TWI Control Register
(TWCR) must be initialized as follows:

The upper seven bits of TWAR are the address to which the 2-wire Serial Interface will respond when
addressed by a Master (TWAR.TWA[6:0]). If the LSB of TWAR is written to TWAR. TWGCI=1, the TWI will
respond to the general call address (0x00), otherwise it will ignore the general call address.

TWCR must hold a value of the type TWCR=0100010x - TWEN must be written to one to enable the TWI.
The TWEA bit must be written to one to enable the acknowledgement of the device’s own slave address
or the general call address. TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own slave
address (or the general call address if enabled) followed by the data direction bit. If the direction bit is “1”
(read), the TWI will operate in ST mode, otherwise SR mode is entered. After its own slave address and
the write bit have been received, the TWINT Flag is set and a valid status code can be read from TWSR.
The status code is used to determine the appropriate software action. The appropriate action to be taken
for each status code is detailed in the table below. The ST mode may also be entered if arbitration is lost
while the TWI is in the Master mode (see state 0xBO0).

If the TWCR.TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the
transfer. State 0xCO or state 0xC8 will be entered, depending on whether the Master Receiver transmits a
NACK or ACK after the final byte. The TWI is switched to the not addressed Slave mode, and will ignore
the Master if it continues the transfer. Thus the Master Receiver receives all '1' as serial data. State 0xC8
is entered if the Master demands additional data bytes (by transmitting ACK), even though the Slave has
transmitted the last byte (TWEA zero and expecting NACK from the Master).

While TWCR.TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA. This
implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA bit is set,
the interface can still acknowledge its own slave address or the general call address by using the 2-wire
Serial Bus clock as a clock source. The part will then wake up from sleep and the TWI will hold the SCL
clock will low during the wake up and until the TWINT Flag is cleared (by writing '1' to it). Further data
transmission will be carried out as normal, with the AVR clocks running as normal. Observe that if the
AVR is set up with a long start-up time, the SCL line may be held low for a long time, blocking other data
transmissions.

Note: The 2-wire Serial Interface Data Register (TWDR) does not reflect the last byte present on the bus
when waking up from these Sleep modes.

AtmeL Atmel ATmega32A [DATASHEET] 242

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 24-6. Status Codes for Slave Transmitter Mode

Status
Code
(TWSR)

Prescaler
Bits are 0

0xA8

0xBO

0xB8

0xCO0

0xC8

Status of the 2-wire Serial
Bus and 2-wire Serial
Interface Hardware

Own SLA+R has been
received;
ACK has been returned

Arbitration lost in SLA+R/W
as Master; own SLA+R has
been

received; ACK has been
returned

Data byte in TWDR has
been
transmitted; ACK has been

received

Data byte in TWDR has
been

transmitted; NOT ACK has
been

received

Last data byte in TWDR has
been transmitted (TWEA =
“0”); ACK has been received

Atmel

To/from TWDR

Load data byte or
Load data byte

Load data byte or
Load data byte

Load data byte or
Load data byte

No TWDR action
or
No TWDR action
or

No TWDR action
or

No TWDR action

No TWDR action
or
No TWDR action
or

No TWDR action
or

No TWDR action

STA | STO | TWI

X
X

Application Software Response

To TWCR

o O oo

o O oo

Next Action Taken by TWI Hardware

Last data byte will be transmitted and NOT ACK
should be received

Data byte will be transmitted and ACK should be
received

Last data byte will be transmitted and NOT ACK
should be received

Data byte will be transmitted and ACK should be
received

Last data byte will be transmitted and NOT ACK
should be received

Data byte will be transmitted and ACK should be
received

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA,;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”; a START
condition will be transmitted when the bus becomes
free

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”; a START
condition will be transmitted when the bus becomes
free

Atmel ATmega32A [DATASHEET] 243

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 24-18. Formats and States in the Slave Transmitter Mode

Reception of the o wn T

sla ve address and one or | S | SLA 0 R A DATA | A | DATA A | PorS |
more data b ytes *

SAS $BS @
Arbitration lost as master
and addressed as sla ve A

$BO

Last data b yte transmitted. ,
Switched to not addressed A All 1's PorS

slave (TWEA ='0") I

$C8

- Any number of data b ytes
From master to sla ve DATA A and their associated ac knowledge bits

From slave to master This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Ser ial Bus The
prescaler bits are z ero or mask ed to z ero

24.6.6. Miscellaneous States
There are two status codes that do not correspond to a defined TWI state, see the table below.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag is not set. This
occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a Two-wire Serial Bus transfer. A bus error
occurs when a START or STOP condition occurs at an illegal position in the format frame. Examples of
such illegal positions are during the serial transfer of an address byte, a data byte, or an acknowledge bit.
When a bus error occurs, TWINT is set. To recover from a bus error, the TWSTO Flag must set and
TWINT must be cleared by writing a logic one to it. This causes the TWI to enter the not addressed Slave
mode and to clear the TWSTO Flag (no other bits in TWCR are affected). The SDA and SCL lines are
released, and no STOP condition is transmitted.

Table 24-7. Miscellaneous States

Status Status of the 2-wire Serial | Application Software Response Next Action Taken by TWI Hardware
Code Bus and 2-wire Serial
(TWSR) Interface Hardware Toifrom TWDR To TWCR

Prescaler STA |STO | TWI | TWE

Bits are 0 NT |A

O0xF8 No relevant state No TWDR action No TWCR action Wait or proceed current transfer
information available;
TWINT =“0”

0x00 Bus error due to an illegal No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP
START or STOP condition condition is sent on the bus. In all cases, the bus

is released and TWSTO is cleared.

24.6.7. Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action. Consider
for example reading data from a serial EEPROM. Typically, such a transfer involves the following steps:

AtmeL Atmel ATmega32A [DATASHEET] 244

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

24.7.

Atmel

The transfer must be initiated.

The EEPROM must be instructed what location should be read.
The reading must be performed.

4. The transfer must be finished.

@ N~

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct the
Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data must be read
from the Slave, implying the use of the MR mode. Thus, the transfer direction must be changed. The
Master must keep control of the bus during all these steps, and the steps should be carried out as an
atomical operation. If this principle is violated in a multimaster system, another Master can alter the data
pointer in the EEPROM between steps 2 and 3, and the Master will read the wrong data location. Such a
change in transfer direction is accomplished by transmitting a REPEATED START between the
transmission of the address byte and reception of the data. After a REPEATED START, the Master keeps
ownership of the bus. The following figure shows the flow in this transfer.

Figure 24-19. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiv er
/—‘/\\ /’—/\\
S SLA+W A ADDRESS A | Rs SLA+R A DATA X P
S=START Rs=REPEA TED START P=STOP

Transmitted from master tosla ve Transmitted from sla ve to master

Multi-master Systems and Arbitration

If multiple masters are connected to the same bus, transmissions may be initiated simultaneously by one
or more of them. The TWI standard ensures that such situations are handled in such a way that one of
the masters will be allowed to proceed with the transfer, and that no data will be lost in the process. An
example of an arbitration situation is depicted below, where two masters are trying to transmit data to a
Slave Receiver.

Figure 24-20. An Arbitration Example

CC
Device 1 Device 2 Device 3)
MASTER MASTER SLAVE | seveenns Device n R1 R2
TRANSMITTER TRANSMITTER RECEIVER
A A
spA <Y Y >
SCL = y Y >

Several different scenarios may arise during arbitration, as described below:

« Two or more masters are performing identical communication with the same Slave. In this case,
neither the Slave nor any of the masters will know about the bus contention.

Atmel ATmega32A [DATASHEET] 245

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Two or more masters are accessing the same Slave with different data or direction bit. In this case,
arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters trying to output
a "1' on SDA while another Master outputs a zero will lose the arbitration. Losing masters will switch
to not addressed Slave mode or wait until the bus is free and transmit a new START condition,
depending on application software action.

Two or more masters are accessing different slaves. In this case, arbitration will occur in the SLA
bits. Masters trying to output a '1' on SDA while another Master outputs a zero will lose the
arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if they are being
addressed by the winning Master. If addressed, they will switch to SR or ST mode, depending on
the value of the READ/WRITE bit. If they are not being addressed, they will switch to not addressed
Slave mode or wait until the bus is free and transmit a new START condition, depending on
application software action.

This is summarized in the next figure. Possible status values are given in circles.

Figure 24-21. Possible Status Codes Caused by Arbitration

START SA Data STOP

Arbitration lost in SLA Arbitration lost in Data

Own
Address/ General Call
received

No (8m buswill be released and not addressed slave mode will be entered

A START condition will be transmitted when the busbecomes free

Write 68/78) [Databyte will be received and NOT ACKwill be returned
_/ " | Data byte will be received and ACKwill be returned

Direction

Read

- [ast data byte will be transmitted and NOT ACK should be received
@' Data byte will be transmitted and ACK should be received

24.8. Register Description

Atmel

Atmel ATmega32A [DATASHEET] 246
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

24.8.1. TWBR - TWI Bit Rate Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: TWBR

Offset: 0x00

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x20

Bit 7 6 5 4 3 2 1 0
TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBRO
Access R/W RwW R/W R/W R/wW R/W R/wW R/W
Reset 0 0 0 0 0 0 0 0

Bits 7:0 - TWBRn: TWI Bit Rate Register [n = 7:0]

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency divider
which generates the SCL clock frequency in the Master modes. See Bit Rate Generator Unit for
calculating bit rates.

AtmeL Atmel ATmega32A [DATASHEET] 247

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

24.8.2,

Bit

Access

Reset

TWCR - TWI Control Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a Master
access by applying a START condition to the bus, to generate a Receiver acknowledge, to generate a
stop condition, and to control halting of the bus while the data to be written to the bus are written to the
TWDR. It also indicates a write collision if data is attempted written to TWDR while the register is
inaccessible.

Name: TWCR

Offset: 0x36

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x56

7 6 5 4 3 2 1 0
TWINT TWEA TWSTA TWSTO TWWC TWEN TWIE
R/W R/wW R/W R/W R R/W R/W
0 0 0 0 0 0 0

Bit 7 — TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application software
response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the TWI Interrupt Vector.
While the TWINT Flag is set, the SCL low period is stretched. The TWINT Flag must be cleared by
software by writing a logic one to it.

Note that this flag is not automatically cleared by hardware when executing the interrupt routine. Also
note that clearing this flag starts the operation of the TWI, so all accesses to the TWI Address Register
(TWAR), TWI Status Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing
this flag.

Bit 6 — TWEA: TWI Enable Acknowledge
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to one, the
ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.
2. A general call has been received, while the TWGCE bit in the TWAR is set.
3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire Serial Bus
temporarily. Address recognition can then be resumed by writing the TWEA bit to one again.

Bit 5 - TWSTA: TWI START Condition

The application writes the TWSTA bit to one when it desires to become a Master on the 2-wire Serial Bus.
The TWI hardware checks if the bus is available, and generates a START condition on the bus if it is free.
However, if the bus is not free, the TWI waits until a STOP condition is detected, and then generates a
new START condition to claim the bus Master status. TWSTA must be cleared by software when the
START condition has been transmitted.

AtmeL Atmel ATmega32A [DATASHEET] 248

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Bit 4 - TWSTO: TWI STOP Condition

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire Serial Bus.
When the STOP condition is executed on the bus, the TWSTO bit is cleared automatically. In Slave
mode, setting the TWSTO bit can be used to recover from an error condition. This will not generate a
STOP condition, but the TWI returns to a well-defined unaddressed Slave mode and releases the SCL
and SDA lines to a high impedance state.

Bit 3 — TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register —- TWDR when TWINT is low.
This flag is cleared by writing the TWDR Register when TWINT is high.

Bit 2 - TWEN: TWI Enable

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to one, the
TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling the slew-rate limiters
and spike filters. If this bit is written to zero, the TWI is switched off and all TWI transmissions are
terminated, regardless of any ongoing operation.

Bit 0 —- TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be activated for
as long as the TWINT Flag is high.

AtmeL Atmel ATmega32A [DATASHEET] 249

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

24.8.3. TWSR - TWI Status Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
Name: TWSR
Offset: 0x01
Reset: OxF8
Property: When addressing I/O Registers as data space the offset address is 0x21
Bit 7 6 5 4 3 2 1 0
TWS4 TWS3 TWS2 TWS1 TWSO TWPS1 TWPSO0
Access R R R R R R/W R/W

Reset 0 0 0 0 1 0 0
Bits 7:3 — TWSn: TWI Status Bit 7 [n = 7:3]
The TWSJ[7:3] reflect the status of the TWI logic and the 2-wire Serial Bus. The different status codes are
described later in this section. Note that the value read from TWSR contains both the 5-bit status value
and the 2-bit prescaler value. The application designer should mask the prescaler bits to zero when
checking the Status bits. This makes status checking independent of prescaler setting. This approach is
used in this datasheet, unless otherwise noted.
Bits 1:0 —- TWPSn: TWI Prescaler [n = 1:0]
These bits can be read and written, and control the bit rate prescaler.
Table 24-8. TWI Bit Rate Prescaler
TWPS1 TWPSO0 Prescaler Value
0 0 1
0 1 4

1 0 16
1 1 64
To calculate bit rates, refer to Bit Rate Generator Unit. The value of TWPS1:0 is used in the equation.
AtmeL Atmel ATmega32A [DATASHEET] 250

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

24.8.4.

Bit

Access

Reset

TWDR - TWI Data Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR contains
the last byte received. It is writable while the TWI is not in the process of shifting a byte. This occurs when
the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data Register cannot be initialized by
the user before the first interrupt occurs. The data in TWDR remains stable as long as TWINT is set.
While data is shifted out, data on the bus is simultaneously shifted in. TWDR always contains the last
byte present on the bus, except after a wake up from a sleep mode by the TWI interrupt. In this case, the
contents of TWDR is undefined. In the case of a lost bus arbitration, no data is lost in the transition from
Master to Slave. Handling of the ACK bit is controlled automatically by the TWI logic, the CPU cannot
access the ACK bit directly.

Name: TWDR

Offset: 0x03

Reset: OxFF

Property: When addressing I/O Registers as data space the offset address is 0x23

7 6 5 4 3 2 1 0
TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWDO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 1

Bits 7:0 —- TWDn: TWI Data [n = 7:0]
These eight bits constitute the next data byte to be transmitted, or the latest data byte received on the 2-
wire Serial Bus.

AtmeL Atmel ATmega32A [DATASHEET] 251

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

24.8.5.

Bit

Access

Reset

TWAR - TWI (Slave) Address Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When

addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of TWAR) to

which the TWI will respond when programmed as a Slave Transmitter or Receiver, and not needed in the
Master modes. In multimaster systems, TWAR must be set in masters which can be addressed as Slaves
by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if enabled) in the
received serial address. If a match is found, an interrupt request is generated.

Name: TWAR

Offset: 0x02

Reset: Ox7F

Property: When addressing I/O Registers as data space the offset address is 0x22

7 6 5 4 3 2 1 0
TWAG TWAS TWA4 TWAS3 TWA2 TWA1 TWAO TWGCE
R/W R/W R/W R/W R/W R/W R/W R/IW
0 0 0 0 0 0 1 0

Bits 7:1 — TWAn: TWI (Slave) Address [n = 6:0]
These seven bits constitute the slave address of the TWI unit.

Bit 0 — TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the Two-wire Serial Bus.

AtmeL Atmel ATmega32A [DATASHEET] 252

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

25.2.

AC - Analog Comparator

Overview

The Analog Comparator compares the input values on the positive pin AINO and negative pin AIN1. When
the voltage on the positive pin AINO is higher than the voltage on the negative pin AIN1, the Analog
Comparator Output, ACO, is set. The comparator’s output can be set to trigger the Timer/Counter1 Input
Capture function. In addition, the comparator can trigger a separate interrupt, exclusive to the Analog
Comparator. The user can select Interrupt triggering on comparator output rise, fall or toggle. A block
diagram of the comparator and its surrounding logic is shown in the figure below.

Figure 25-1. Analog Comparator Block Diagram(?)

BANDGAP
REFERENCE VCcC

C
ACBG J

ACD —>»

ACIE
AINO

A ANALOG
INTERRUPT COMPARATOR

/ > SELECT IRQ
T T L AcCl
ACIS1 ACISO ACIC

y

»
»

TO T/C1 CAPTURE
TRIGGER MUX

'

ADC MULTIPLEXER ACO
OUTPUT™

I
Note:

1. See Table Analog Comparator Multiplexed Input in next section.
2. Refer to the Pin Configuration and the Port D Pins Alternate Functions Table.

Related Links
Pin Configurations on page 13

Alternate Functions of Port D on page 86

Analog Comparator Multiplexed Input

It is possible to select any of the ADC7:0 pins to replace the negative input to the Analog Comparator.
The ADC multiplexer is used to select this input, and consequently the ADC must be switched off to utilize
this feature. If the Analog Comparator Multiplexer Enable bit (ACME in SFIOR) is set and the ADC is
switched off (ADEN in ADCSRA is zero), MUX2:0 in ADMUX select the input pin to replace the negative
input to the Analog Comparator, as shown in the table below. If ACME is cleared or ADEN is set, AIN1 is
applied to the negative input to the Analog Comparator.

Table 25-1. Analog Comparator Multiplexed Input

ACME m MUX[2:0] Analog Comparator Negative Input
0 X XXX

AIN1
1 1 XXX AIN1

AtmeL Atmel ATmega32A [DATASHEET] 253

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

ACME ADEN MUX[2:0]

Analog Comparator Negative Input

1 0 000 ADCO
1 0 001 ADC1
1 0 010 ADC2
1 0 011 ADC3
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADC6
1 0 111 ADC7

25.3. Register Description

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

254

25.3.1. SFIOR - Analog Comparator Control and Status Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: SFIOR

Offset: 0x30

Reset: N/A

Property: When addressing I/O Registers as data space the offset address is 0x50

Bit 7 6 5 4 3 2 1 0
ACME
Access R/W
Reset 0

Bit 3 — ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the ADC
multiplexer selects the negative input to the Analog Comparator. When this bit is written logic zero, AIN1
is applied to the negative input of the Analog Comparator. For a detailed description of this bit, see
Analog Comparator Multiplexed Input table.

AtmeL Atmel ATmega32A [DATASHEET] 255

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

25.3.2.

Bit

Access

Reset

ACSR - Analog Comparator Control and Status Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: ACSR

Offset: 0x08

Reset: N/A

Property: When addressing I/O Registers as data space the offset address is 0x28

7 6 5 4 3 2 1 0
ACD ACBG ACO ACI ACIE ACIC ACIS1 ACISO
R/W R/wW R R/W R/wW R/W R/wW R/W

0 0 a 0 0 0 0 0

Bit 7 — ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit can be set
at any time to turn off the Analog Comparator. This will reduce power consumption in Active and Idle
mode. When changing the ACD bit, the Analog Comparator Interrupt must be disabled by clearing the
ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is changed.

Bit 6 — ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AINO is applied to the positive input of the Analog Comparator.

Bit 5 — ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

Bit 4 — ACl: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined by ACIS1
and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is set and the I-bit in
SREG is set. ACl is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, ACl is cleared by writing a logic one to the flag.

Bit 3 — ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Comparator
interrupt is activated. When written logic zero, the interrupt is disabled.

Bit 2 — ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counter1 to be triggered by
the Analog Comparator. The comparator output is in this case directly connected to the input capture
front-end logic, making the comparator utilize the noise canceler and edge select features of the Timer/
Counter1 Input Capture interrupt. When written logic zero, no connection between the Analog
Comparator and the input capture function exists. To make the comparator trigger the Timer/Counter1
Input Capture interrupt, the ICIE1 bit in the Timer Interrupt Mask Register (TIMSK1) must be set.

Bits 1:0 — ACISn: Analog Comparator Interrupt Mode Select [n = 1:0]
These bits determine which comparator events that trigger the Analog Comparator interrupt.

AtmeL Atmel ATmega32A [DATASHEET] 256

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 25-2. ACIS[1:0] Settings

ACIS1 ACISO0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge.

1

1

Comparator Interrupt on Rising Output Edge.

When changing the ACIS1/ACISO bits, the Analog Comparator Interrupt must be disabled by clearing its
Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the bits are changed.

Atmel

Atmel ATmega32A [DATASHEET] 257
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

26.

26.1.

ADC - Analog to Digital Converter

Features
* 10-bit Resolution
¢ 0.5 LSB Integral Non-Linearity
12 LSB Absolute Accuracy
* 13 -260us Conversion Time
+ Up to 15ksps at Maximum Resolution
* 8 Multiplexed Single Ended Input Channels
« 7 Differential Input Channels
« 2 Differential Input Channels with Optional Gain of 10x and 200x
* Optional Left Adjustment for ADC Result Readout
* 0-Vcc ADC Input Voltage Range
e 2.7 -V Differential ADC Voltage Range
+ Selectable 2.56V ADC Reference Voltage
* Free Running or Single Conversion Mode
* ADC Start Conversion by Auto Triggering on Interrupt Sources
* Interrupt on ADC Conversion Complete
* Sleep Mode Noise Canceler

Overview

The ATmega32A features a 10-bit successive approximation ADC. The ADC is connected to an 8-
channel Analog Multiplexer which allows 8 single-ended voltage inputs constructed from the pins of Port
A. The single-ended voltage inputs refer to OV (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs (ADCH1,
ADCO and ADC3, ADC2) are equipped with a programmable gain stage, providing amplification steps of
0dB (1x), 20dB (10x), or 46dB (200x) on the differential input voltage before the A/D conversion. Seven
differential analog input channels share a common negative terminal (ADC1), while any other ADC input
can be selected as the positive input terminal. If 1x or 10x gain is used, 8-bit resolution can be expected.
If 200x gain is used, 7-bit resolution can be expected.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is held at a
constant level during conversion. A block diagram of the ADC is shown below.

The ADC has a separate analog supply voltage pin, AVcc. AV must not differ more than £0.3V from
Ve See section ADC Noise Canceler on how to connect this pin.

Internal reference voltages of nominally 2.56V or AV are provided On-chip. The voltage reference may
be externally decoupled at the AREF pin by a capacitor for better noise performance.

AtmeL Atmel ATmega32A [DATASHEET] 258

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 26-1. Analog to Digital Converter Block Schematic Operation

ADC CONVERSION
COMPLETE IRQ INTERRUPT
FLAGS

| | ADTS[2:0]
o 8-BIT DATA BUS

A -

< >
=]

¢ ¢5 15 0

ADIE

ADC MULTIPLEXER ADC CTRL. & STATUS ADC DATA REGISTER
SELECT (ADMUX) REGISTER (ADCSRA) (ADCH/ADCL)
_ = 3 ol ol o] = T A
= E < EEEEREEE TRIGGER g
SELECT 2
— =<
Y ¥
| MUXDECODER| Y YY
PRESCALER START

CONVERSION LOGIC

CHANNEL SELECTION

INTERNAL
REFERENCE

\ 4 SAMPLE & HOLD
COMPARATOR

AREF

® 10-BIT DAC

AGND|

BANDGAP

REFERENCE <
.\ SINGLE ENDED / DIFFERENTIAL SELECTION

ADC7

POS. ADC MULTIPLEXER
INPUT * * » OUTPUT

MUX

ADC6

ADCs

ADC4

ADC3

ADC2

ADC1

ADCO

/

—HHTINA]

NEG.

INPUT
w

The ADC converts an analog input voltage to a 10-bit digital value through successive approximation. The
minimum value represents GND and the maximum value represents the voltage on the AREF pin minus 1
LSB. Optionally, AVCC or an internal 2.56V reference voltage may be connected to the AREF pin by
writing to the REFSn bits in the ADMUX Register. The internal voltage reference may thus be decoupled
by an external capacitor at the AREF pin to improve noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in ADMUX. Any of
the ADC input pins, as well as GND and a fixed bandgap voltage reference, can be selected as single
ended inputs to the ADC. A selection of ADC input pins can be selected as positive and negative inputs to
the differential gain amplifier.

If differential channels are selected, the differential gain stage amplifies the voltage difference between
the selected input channel pair by the selected gain factor. This amplified value then becomes the analog
input to the ADC. If single ended channels are used, the gain amplifier is bypassed altogether.

AtmeL Atmel ATmega32A [DATASHEET] 259

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and input
channel selections will not go into effect until ADEN is set. The ADC does not consume power when
ADEN is cleared, so it is recommended to switch off the ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and ADCL. By
default, the result is presented right adjusted, but can optionally be presented left adjusted by setting the
ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH.
Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the data registers belongs
to the same conversion. Once ADCL is read, ADC access to data registers is blocked. This means that if
ADCL has been read, and a conversion completes before ADCH is read, neither register is updated and
the result from the conversion is lost. When ADCH is read, ADC access to the ADCH and ADCL
Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC access
to the data registers is prohibited between reading of ADCH and ADCL, the interrupt will trigger even if
the result is lost.

Starting a Conversion

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC. This bit
stays high as long as the conversion is in progress and will be cleared by hardware when the conversion
is completed. If a different data channel is selected while a conversion is in progress, the ADC will finish
the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is enabled
by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB (see description of the ADTS bits for a list of the trigger
sources). When a positive edge occurs on the selected trigger signal, the ADC prescaler is reset and a
conversion is started. This provides a method of starting conversions at fixed intervals. If the trigger signal
still is set when the conversion completes, a new conversion will not be started. If another positive edge
occurs on the trigger signal during conversion, the edge will be ignored. Note that an interrupt flag will be
set even if the specific interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A
conversion can thus be triggered without causing an interrupt. However, the interrupt flag must be cleared
in order to trigger a new conversion at the next interrupt event.

Figure 26-2. ADC Auto Trigger Logic

ADTS[2:0]

PRESCALER

START CLK,uoc
ADIF
SOURCE 1

ADATE

A

f CONVERSION
LOGIC

EDGE

SOURCE n DETECTOR

ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon as the
ongoing conversion has finished. The ADC then operates in Free Running mode, constantly sampling
and updating the ADC Data Register. The first conversion must be started by writing a logical one to the
ADSC bit in ADCSRA. In this mode the ADC will perform successive conversions independently of
whether the ADC Interrupt Flag, ADIF is cleared or not.

AtmeL Atmel ATmega32A [DATASHEET] 260

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to one.
ADSC can also be used to determine if a conversion is in progress. The ADSC bit will be read as one
during a conversion, independently of how the conversion was started.

Prescaling and Conversion Timing

Figure 26-3. ADC Prescaler
ADEN :Z)—» Reset
ese!
START 7-BIT ADC PRESCALER

CK —»]

CK/2
CK/4
CK/8
CK/16
CK/32
CK/64
CK/128

YVYY

<
<

<
<
<

ADPSO
ADPS1
ADPS2

ADC CLOCK SOURCE
By default, the successive approximation circuitry requires an input clock frequency between 50kHz and
200kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the input clock frequency
to the ADC can be higher than 200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency from any
CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA. The prescaler starts
counting from the moment the ADC is switched on by setting the ADEN bit in ADCSRA. The prescaler
keeps running for as long as the ADEN bit is set, and is continuously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion starts at
the following rising edge of the ADC clock cycle. See Differential Gain Channels for details on differential
conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched on (ADEN
in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conversion and
13.5 ADC clock cycles after the start of a first conversion. When a conversion is complete, the result is
written to the ADC Data Registers, and ADIF is set. In single conversion mode, ADSC is cleared
simultaneously. The software may then set ADSC again, and a new conversion will be initiated on the first
rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures a fixed
delay from the trigger event to the start of conversion. In this mode, the sample-and-hold takes place two
ADC clock cycles after the rising edge on the trigger source signal. Three additional CPU clock cycles are
used for synchronization logic.

When using Differential mode, along with auto trigging from a source other that the ADC Conversion
Complete, each conversion will require 25 ADC clocks. This is because the ADC must be disabled and
re-enabled after every conversion.

In Free Running mode, a new conversion will be started immediately after the conversion completes,
while ADSC remains high. For a summary of conversion times, see table ADC Conversion Time at the
end of this section.

AtmeL Atmel ATmega32A [DATASHEET] 261

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 26-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Next

First Conversion Conversion

4y, <

Cycle Number | 1] 2 I12|13|f4|15|16|17|18|19|20|21|22|23|24|25| [1]2 |3
I I I I

ADC Clock 4 L LU LT LT UL LT L L LT LT L LA LA L
! | | ! | i

ADEN] ! [| ! I I
I I I I

ADSC /4 | | ! VI
I | I I I

ADIF ! ! | |
1 ! | 1 I 1

apcH 0 / , / / / ! / / 4 4 / 7/) Signand MSB of Result

NS /////0 11111001 R, G

. b . C
\ MUX and REFS \ Conversion /) 4\ MUX and REFS
Sample and Hold

Update Complete Update

Figure 26-5. ADC Timing Diagram, Single Conversion

One Conversion _ Next Conversion

<

| | | |
Cycle Number |l||2|3|4|5|6|7|8|9|10|11|12|13| |1|2|

ADC Clock $ * $ $

ADSC /i ! Vi

| | | |
ADIF I I | !

wen 77T T T T T T T T TTETTT T TTTTTTT TN Simiviss o e
SN/) R T

<\ Sample and Hold c f) \
onversion MUX and REFS

MUX and REFS Complete Update
Update

Figure 26-6. ADC Timing Diagram, Auto Triggered Conversion

One Conversion Next Conversion
[| | |
RN N N A AN R A RN AN N TN IR BN R IR A

soccoee 777771 A\ TY T LT LI LM LML LT L LML L L 47z T 11
S ST VI

ADATE J Il !

aoci NI //////'//////'//////'//////'//////'//////'//////'//////’b'(Sign and MSB of Result

NS T e
-/)I | \ Sample & Conversion / I<\ Prescaler

Prescaler Hold Complete Reset
Reset

MUX and REFS
Update

AtmeL Atmel ATmega32A [DATASHEET] 262

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

26.4.1.

Figure 26-7. ADC Timing Diagram, Free Running Conversion

One Conversion Next Conversion

Cycle Number

ADC Clock $ *

ADSC I I
| |

ADIF !
ADCH 11111/ />:< Sign all;ld MSB of Result
ADCL 71111//////, : LSB o:f Result
Conversion /) \ ~— Sample and Hold
Complete MUX and REFS

Update

Table 26-1. ADC Conversion Time

Condition Sample & Hold Conversion Time
(Cycles from Start of Conversion) (Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13
Auto Triggered conversions 2 13.5

Normal conversions, differential 1.5/2.5 13/14

Differential Gain Channels
When using differential gain channels, certain aspects of the conversion need to be taken into
consideration.

Differential conversions are synchronized to the internal clock CKapc2 equal to half the ADC clock. This
synchronization is done automatically by the ADC interface in such a way that the sample-and-hold
occurs at a specific edge of CKppco. A conversion initiated by the user (that is, all single conversions, and
the first free running conversion) when CKppc» is low will take the same amount of time as a single ended
conversion (13 ADC clock cycles from the next prescaled clock cycle). A conversion initiated by the user
when CKapc is high will take 14 ADC clock cycles due to the synchronization mechanism. In free
running mode, a new conversion is initiated immediately after the previous conversion completes, and
since CKppco is high at this time, all automatically started (that is, all but the first) free running
conversions will take 14 ADC clock cycles.

The gain stage is optimized for a bandwidth of 4kHz at all gain settings. Higher frequencies may be
subjected to non-linear amplification. An external low-pass filter should be used if the input signal
contains higher frequency components than the gain stage bandwidth. Note that the ADC clock frequency
is independent of the gain stage bandwidth limitation. For example the ADC clock period may be 6ps,
allowing a channel to be sampled at 12kSPS, regardless of the bandwidth of this channel.

If differential gain channels are used and conversions are started by Auto Triggering, the ADC must be
switched off between conversions. When Auto Triggering is used, the ADC prescaler is reset before the
conversion is started. Since the gain stage is dependent of a stable ADC clock prior to the conversion,
this conversion will not be valid. By disabling and then re-enabling the ADC between each conversion

AtmeL Atmel ATmega32A [DATASHEET] 263

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

26.5.1.

(writing ADEN in ADCSRA to “0” then to “1”), only extended conversions are performed. The result from
the extended conversions will be valid. Refer to Prescaling and Conversion Timing for timing details.

Changing Channel or Reference Selection

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary register to
which the CPU has random access. This ensures that the channels and reference selection only takes
place at a safe point during the conversion. The channel and reference selection is continuously updated
until a conversion is started. Once the conversion starts, the channel and reference selection is locked to
ensure a sufficient sampling time for the ADC. Continuous updating resumes in the last ADC clock cycle
before the conversion completes (ADIF in ADCSRA is set). Note that the conversion starts on the
following rising ADC clock edge after ADSC is written. The user is thus advised not to write new channel
or reference selection values to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special care must
be taken when updating the ADMUX Register, in order to control which conversion will be affected by the
new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the ADMUX
Register is changed in this period, the user cannot tell if the next conversion is based on the old or the
new settings. ADMUX can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.
2. During conversion, minimum one ADC clock cycle after the trigger event.
3. After a conversion, before the interrupt flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC conversion.

Special care should be taken when changing differential channels. Once a differential channel has been
selected, the gain stage may take as much as 125us to stabilize to the new value. Thus conversions
should not be started within the first 125us after selecting a new differential channel. Alternatively,
conversion results obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing ADC
reference (by changing the REFS1:0 bits in ADMUX).

ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure that the
correct channel is selected:

* In Single Conversion mode, always select the channel before starting the conversion. The channel
selection may be changed one ADC clock cycle after writing one to ADSC. However, the simplest
method is to wait for the conversion to complete before changing the channel selection.

* In Free Running mode, always select the channel before starting the first conversion. The channel
selection may be changed one ADC clock cycle after writing one to ADSC. However, the simplest
method is to wait for the first conversion to complete, and then change the channel selection. Since
the next conversion has already started automatically, the next result will reflect the previous
channel selection. Subsequent conversions will reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accuracy due to
the required settling time for the automatic offset cancellation circuitry. The user should preferably
disregard the first conversion result.

AtmeL Atmel ATmega32A [DATASHEET] 264

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

26.5.2.

26.6.1.

ADC Voltage Reference

The reference voltage for the ADC (Vrer) indicates the conversion range for the ADC. Single ended
channels that exceed Vrgg will result in codes close to Ox3FF. Vggg can be selected as either AV,
internal 2.56V reference, or external AREF pin.

AV is connected to the ADC through a passive switch. The internal 2.56V reference is generated from
the internal bandgap reference (Vgg) through an internal amplifier. In either case, the external AREF pin
is directly connected to the ADC, and the reference voltage can be made more immune to noise by
connecting a capacitor between the AREF pin and ground. Vreg can also be measured at the AREF pin
with a high impedance voltmeter. Note that Vggr is a high impedance source, and only a capacitive load
should be connected in a system.

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no external
voltage is applied to the AREF pin, the user may switch between AV and 2.56V as reference selection.
The first ADC conversion result after switching reference voltage source may be inaccurate, and the user
is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AV than indicated in
table ADC Characteristics, Differential Channels in ADC Characteristics

Related Links
ADC Characteristics on page 367

ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise induced
from the CPU core and other I/O peripherals. The noise canceler can be used with ADC Noise Reduction
and Idle mode. To make use of this feature, the following procedure should be used:

1. Make sure that the ADC is enabled and is not busy converting. Single Conversion mode must be
selected and the ADC conversion complete interrupt must be enabled.

2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion once the CPU
has been halted.

3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt will wake up
the CPU and execute the ADC Conversion Complete interrupt routine. If another interrupt wakes up
the CPU before the ADC conversion is complete, that interrupt will be executed, and an ADC
Conversion Complete interrupt request will be generated when the ADC conversion completes. The
CPU will remain in active mode until a new sleep command is executed.

Note: The ADC will not be automatically turned off when entering other sleep modes than Idle mode and
ADC Noise Reduction mode. The user is advised to write zero to ADCRSA.ADEN before entering such
sleep modes to avoid excessive power consumption. If the ADC is enabled in such sleep modes and the
user wants to perform differential conversions, the user is advised to switch the ADC off and on after
waking up from sleep to prompt an extended conversion to get a valid result.

Analog Input Circuitry

The analog input circuitry for single ended channels is illustrated below. An analog source applied to
ADCn is subjected to the pin capacitance and input leakage of that pin, regardless of whether that
channel is selected as input for the ADC. When the channel is selected, the source must drive the S/H
capacitor through the series resistance (combined resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately 10kQ or less. If such
a source is used, the sampling time will be negligible. If a source with higher impedance is used, the

AtmeL Atmel ATmega32A [DATASHEET] 265

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

sampling time will depend on how long time the source needs to charge the S/H capacitor, with can vary
widely. The user is recommended to only use low impedance sources with slowly varying signals, since
this minimizes the required charge transfer to the S/H capacitor.

If differential gain channels are used, the input circuitry looks somewhat different, although source
impedances of a few hundred kQ or less is recommended.

Signal components higher than the Nyquist frequency (fapc/2) should not be present for either kind of
channels, to avoid distortion from unpredictable signal convolution. The user is advised to remove high
frequency components with a low-pass filter before applying the signals as inputs to the ADC.

Figure 26-8. Analog Input Circuitry

ADCn D AN L

26.6.2. Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of analog
measurements. If conversion accuracy is critical, the noise level can be reduced by applying the following
techniques:
1. Keep analog signal paths as short as possible. Make sure analog tracks run over the ground plane,
and keep them well away from high-speed switching digital tracks.
2. The AV pin on the device should be connected to the digital V¢ supply voltage via an LC
network as shown in the figure below.
3. Use the ADC noise canceler function to reduce induced noise from the CPU.
4. If any ADC port pins are used as digital outputs, it is essential that these do not switch while a
conversion is in progress.
AtmeL Atmel ATmega32A [DATASHEET] 266

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 26-9. ADC Power Connections

Analog Ground Plane

>

-

1
10uH

=
(9]
S
w)
@)
2

100nF

26.6.3. Offset Compensation Schemes
The gain stage has a built-in offset cancellation circuitry that nulls the offset of differential measurements
as much as possible. The remaining offset in the analog path can be measured directly by selecting the
same channel for both differential inputs. This offset residue can be then subtracted in software from the
measurement results. Using this kind of software based offset correction, offset on any channel can be
reduced below one LSB.

26.6.4. ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and Vggr in 2" steps (LSBs). The
lowest code is read as 0, and the highest code is read as 2"-1.

Several parameters describe the deviation from the ideal behavior:

« Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition (at 0.5
LSB). Ideal value: 0 LSB.

AtmeL Atmel ATmega32A [DATASHEET] 267

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 26-10. Offset Error
Output Codeh

Ideal ADC
Actual ADC

VRer Input Voltage

« Gain error: After adjusting for offset, the gain error is found as the deviation of the last transition
(Ox3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum). Ideal value: 0 LSB.

Figure 26-11. Gain Error

Output Code h Gain
Error;
fffff Ideal ADC
Actual ADC
VRer Input Voltage

* Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0 LSB.

Figure 26-12. Integral Non-linearity (INL)
Output Code A

N

Ideal ADC

Actual ADC

VREF Vlnput Voltage

Atmel

Atmel ATmega32A [DATASHEET]

268

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

« Differential Non-linearity (DNL): The maximum deviation of the actual code width (the interval
between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 LSB.

Figure 26-13. Differential Non-linearity (DNL)

Output Code h
Ox3FF

[

0 Vreg Input Voltage

* Quantization Error: Due to the quantization of the input voltage into a finite number of codes, a
range of input voltages (1 LSB wide) will code to the same value. Always +0.5 LSB.
* Absolute accuracy: The maximum deviation of an actual (unadjusted) transition compared to an

ideal transition for any code. This is the compound effect of offset, gain error, differential error, non-
linearity, and quantization error. Ideal value: £0.5 LSB.

26.7. ADC Conversion Result
After the conversion is complete (ADCSRA.ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH).
For single ended conversion, the result is
V1024
ADC =N 77
VREer
where V| is the voltage on the selected input pin, and Vrger the selected voltage reference (see Table
26-3 and Table 26-4). 0x000 represents analog ground, and 0x3FF represents the selected reference
voltage minus one LSB.
If differential channels are used, the result is
Vooe— V - GAIN - 512
ADC = (Vpos~ Vneg)
VRER
where Vpgg is the voltage on the positive input pin, V\gg the voltage on the negative input pin, GAIN the
selected gain factor, and VREF the selected voltage reference. The result is presented in two’s
complement form, from 0x200 (-512d) through 0x1FF (+511d). Note that if the user wants to perform a
quick polarity check of the results, it is sufficient to read the MSB of the result (ADC9 in ADCH). If this bit
is one, the result is negative, and if this bit is zero, the result is positive. The next figure shows the
decoding of the differential input range.
The table below shows the resulting output codes if the differential input channel pair (ADCn - ADCm) is
selected with a gain of GAIN and a reference voltage of Vrgr.
AtmeL Atmel ATmega32A [DATASHEET] 269

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 26-14. Differential Measurement Range

A
Output Code
0x1FF— —
A Al
) 0000 | 1) ?
- T >
T T - T T T
((0x3FF | « Vi /GAIN Bif;erent(iélﬁm)ut
P oltage (Volts

I 1
-V /GAIN

Table 26-2. Correlation Between Input Voltage and Output Codes

Read Code Corresponding decimal value

Vapcm * Vrer /GAIN
Vapcm T 511/512 Vreg /GAIN
Vapcm + 510/512 Vgee /GAIN

VADCm +1/512 VREF /GAIN

Vabcm
Vapcm - 1/512 Vier /GAIN

Vapcm - 511/512 Vrer /GAIN
Vabcm - VRer /GAIN

Example:

0x200

Ox1FF
Ox1FF
Ox1FE

0x001
0x000
O0x3FF

0x201
0x200

511
511
510

-511
-512

ADMUX = OxED (ADC3 - ADC2, 10x gain, 2.56V reference, left adjusted result)

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

270

Voltage on ADC3 is 300mV, voltage on ADC2 is 500mV.
ADCR =512 x 10 x (300 - 500) / 2560 = -400 = 0x270

ADCL will thus read 0x00, and ADCH will read 0x9C. Writing zero to ADLAR right adjusts the result:
ADCL = 0x70, ADCH = 0x02.

26.8. Register Description

AtmeL Atmel ATmega32A [DATASHEET]

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

271

26.8.1.

Bit

Access

Reset

ADMUX - ADC Multiplexer Selection Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: ADMUX

Offset: 0x07

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x27

7 6 5 4 3 2 1 0
REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUXO0
R/W RwW R/W R/W R/wW R/W R/wW R/W
0 0 0 0 0 0 0 0

Bits 7:6 — REFSn: Reference Selection [n = 1:0]

These bits select the voltage reference for the ADC. If these bits are changed during a conversion, the
change will not go in effect until this conversion is complete (ADIF in ADCSRA is set). The internal
voltage reference options may not be used if an external reference voltage is being applied to the AREF

pin.
Table 26-3. ADC Voltage Reference Selection

m Voltage Reference Selection

AREF, Internal V¢ turned off

01 AVc with external capacitor at AREF pin
10 Reserved
11 Internal 2.56V Voltage Reference with external capacitor at AREF pin

Bit 5 — ADLAR: ADC Left Adjust Result

The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Register. Write one
to ADLAR to left adjust the result. Otherwise, the result is right adjusted. Changing the ADLAR bit will
affect the ADC Data Register immediately, regardless of any ongoing conversions. For a complete
description of this bit, see ADCL and ADCH.

Bits 4:0 — MUXn: Analog Channel Selection [n = 4:0]

The value of these bits selects which combination of analog inputs are connected to the ADC. These bits
also select the gain for the differential channels. Refer to table below for details. If these bits are changed
during a conversion, the change will not go in effect until this conversion is complete (ADIF in ADCSRA is
set).

AtmeL Atmel ATmega32A [DATASHEET] 272

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 26-4. Input Channel and Gain Selections

Atmel

00000
00001
00010
00011
00100
00101
00110
00111
01000'")
01001
01010")
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101

ADCO
ADC1
ADC2
ADC3
ADC4
ADC5
ADCS6
ADC7
Reserved

Reserved

N/A

Reserved

N/A

ADCO
ADC1
ADCO
ADC1
ADC2
ADC3
ADC2
ADC3
ADCO
ADC1
ADC2
ADC3
ADC4
ADC5
ADCG6
ADC7
ADCO
ADC1
ADC2
ADC3
ADC4
ADC5

ADCO 10x
ADCO 10x
ADCO 200x
ADCO 200x
ADC2 10x
ADC2 10x
ADC2 200x
ADC2 200x
ADCA1 1x
ADC1 1x
ADC1 1x
ADC1 1x
ADCA1 1x
ADC1 1x
ADC1 1x
ADC1 1x
ADC2 1x
ADC2 1x
ADC2 1x
ADC2 1x
ADC2 1x
ADC2 1x

Atmel ATmega32A [DATASHEET]
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

MUX[4:0] |[Single Ended Input |Positive Differential | Negative Differential
Input Input

273

MUX[4:0] Single Ended Input | Positive Differential | Negative Differential | Gain
Input Input

11110 1.22V (Vgg)
11111 0V (GND)

N/A

Note: 1. Can be used for offset calibration.

AtmeL Atmel ATmega32A [DATASHEET] 274

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

26.8.2.

Bit

Access

Reset

ADCSRA - ADC Control and Status Register A

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: ADCSRA

Offset: 0x06

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x26

7 6 5 4 3 2 1 0
ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPSO
R/W R/wW R/W R/W R/wW R/W R/wW R/W
0 0 0 0 0 0 0 0

Bit 7 — ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the ADC off
while a conversion is in progress, will terminate this conversion.

Bit 6 — ADSC: ADC Start Conversion

In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode, write
this bit to one to start the first conversion. The first conversion after ADSC has been written after the ADC
has been enabled, or if ADSC is written at the same time as the ADC is enabled, will take 25 ADC clock
cycles instead of the normal 13. This first conversion performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete, it returns
to zero. Writing zero to this bit has no effect.

Bit 5 — ADATE: ADC Auto Trigger Enable

When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a conversion on
a positive edge of the selected trigger signal. The trigger source is selected by setting the ADC Trigger
Select bits, ADTS in SFIOR.

Bit 4 — ADIF: ADC Interrupt Flag

This bit is set when an ADC conversion completes and the Data Registers are updated. The ADC
Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is cleared
by hardware when executing the corresponding interrupt Handling Vector. Alternatively, ADIF is cleared
by writing a logical one to the flag. Beware that if doing a Read-Modify-Write on ADCSRA, a pending
interrupt can be disabled. This also applies if the SBI and CBI instructions are used.

Bit 3 — ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Interrupt is
activated.

Bits 2:0 — ADPSn: ADC Prescaler Select [n = 2:0]
These bits determine the division factor between the XTAL frequency and the input clock to the ADC.

AtmeL Atmel ATmega32A [DATASHEET] 275

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 26-5. ADC Prescaler Selections

ADPS[2:0] ‘ Division Factor

000 2

001 2

010 4

011 8

100 16

101 32

110 64

11 128

Atmel Atmel ATmega32A [DATASHEET] 276

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

26.8.3.

Bit

Access

Reset

ADCL - ADC Data Register Low (ADLAR=0)
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When

addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

When an ADC conversion is complete, the result is found in these two registers. If differential channels
are used, the result is presented in two’s complement form.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently, if the result
is left adjusted and no more than 8-bit precision is required, it is sufficient to read ADCH. Otherwise,
ADCL must be read first, then ADCH.

The ADLAR bit and the MUXn bits in ADMUX affect the way the result is read from the registers. If
ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the result is right adjusted.

Name: ADCL
Offset: 0x04
Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x24

7 6 5 4 3 2 1 0
ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCA1 ADCO
R R R R R R R R
0 0 0 0 0 0 0 0

Bits 7:0 — ADCn: ADC Conversion Result [n = 7:0]
These bits represent the result from the conversion. Refer to ADC Conversion Result for details.

AtmeL Atmel ATmega32A [DATASHEET] 277

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

26.8.4. ADCH — ADC Data Register High (ADLAR=0)

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When

addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: ADCH

Offset: 0x05

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x25

Bit 7 6 5 4 3 2 1 0
ADC9 ADCS8

Access R R

Reset 0 0

Bit 1 — ADC9: ADC Conversion Result
Refer to ADCL

Bit 0 — ADC8: ADC Conversion Result

AtmeL Atmel ATmega32A [DATASHEET] 278

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

26.8.5. ADCL - ADC Data Register Low (ADLAR=1)

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When

addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: ADCL

Offset: 0x04

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x24

Bit 7 6 5 4 3 2 1 0
ADC1 ADCO
Access R R
Reset 0 0

Bit 7 — ADC1: ADC Conversion Result
Refer to ADCL

Bit 6 — ADC0: ADC Conversion Result

AtmeL Atmel ATmega32A [DATASHEET] 279

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

26.8.6. ADCH — ADC Data Register High (ADLAR=1)

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: ADCH

Offset: 0x05

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x25

Bit 7 6 5 4 3 2 1 0
ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2

Access R R R R R R R R

Reset 0 0 0 0 0 0 0 0

Bit 7 — ADC9: ADC Conversion Result
Bit 6 —- ADC8: ADC Conversion Result
Bit 5— ADC7: ADC Conversion Result
Bit 4 — ADC6: ADC Conversion Result
Bit 3 — ADC5: ADC Conversion Result
Bit 2 — ADC4: ADC Conversion Result
Bit 1 — ADC3: ADC Conversion Result

Bit 0 — ADC2: ADC Conversion Result
Refer to ADCL

AtmeL Atmel ATmega32A [DATASHEET] 280

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

26.8.7. SFIOR - Special Function 10 Register

Name: SFIOR

Offset: 0x30

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x50

Bit 7 6 5 4 3 2 1 0
ADTS2 ADTS1 ADTSO
Access R/W R/W R/W
Reset 0 0 0

Bits 7:5 - ADTSn: ADC Auto Trigger Source [n = 2:0]

If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger an ADC
conversion. If ADATE is cleared, the ADTS2:0 settings will have no effect. A conversion will be triggered
by the rising edge of the selected Interrupt Flag. Note that switching from a trigger source that is cleared
to a trigger source that is set, will generate a positive edge on the trigger signal. If ADEN in ADCSRA is
set, this will start a conversion. Switching to Free Running mode (ADTS[2:0]=0) will not cause a trigger
event, even if the ADC Interrupt Flag is set.

Table 26-6. ADC Auto Trigger Source Selections

ADTS[2:0] Trigger Source

000 Free Running mode
001 Analog Comparator
010 External Interrupt Request 0
01 Timer/Counter0 Compare Match
100 Timer/Counter0 Overflow
101 Timer/Counter1 Compare Match B
110 Timer/Counter1 Overflow
111 Timer/Counter1 Capture Event
AtmeL Atmel ATmega32A [DATASHEET] 281

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

27.

JTAG Interface and On-chip Debug System

27.1. Features
+ JTAG (IEEE std. 1149.1 Compliant) Interface
* Boundary-scan Capabilities According to the IEEE std. 1149.1 (JTAG) Standard
« Debugger Access to:
— All Internal Peripheral Units
— Internal and External RAM
— The Internal Register File
— Program Counter
— EEPROM and Flash Memories
+ Extensive On-chip Debug Support for Break Conditions, Including:
— AVR Break Instruction
— Break on Change of Program Memory Flow
— Single Step Break
— Program Memory Breakpoints on Single Address or Address Range
— Data Memory Breakpoints on Single Address or Address Range
¢ Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* On-chip Debugging Supported by Atmel Studio
27.2. Overview
The AVR IEEE std. 1149.1 compliant JTAG interface can be used for:
+ Testing PCBs by using the JTAG Boundary-scan capability
* Programming the non-volatile memories, Fuses and Lock bits
* On-chip debugging
A brief description is given in the following sections. Detailed descriptions for Programming via the JTAG
interface, and using the Boundary-scan Chain can be found in the sections Programming Via the JTAG
Interface and |IEEE 1149.1 (JTAG) Boundary-scan, respectively. The On-chip Debug support is
considered being private JTAG instructions, and distributed within ATMEL and to selected third party
vendors only.
Figure 27-1 shows the JTAG interface and the On-chip Debug system. The TAP Controller is a state
machine controlled by the TCK and TMS signals. The TAP Controller selects either the JTAG Instruction
Register or one of several Data Registers as the scan chain (Shift Register) between the TDI — input and
TDO - output. The Instruction Register holds JTAG instructions controlling the behavior of a Data
Register.
The ID-Register, Bypass Register, and the Boundary-scan Chain are the data registers used for board-
level testing. The JTAG Programming Interface (actually consisting of several physical and virtual Data
Registers) is used for serial programming via the JTAG interface. The Internal Scan Chain and Break
Point Scan Chain are used for On-chip debugging only.
Related Links
Programming Via the JTAG Interface on page 345
/ItmeL Atmel ATmega32A [DATASHEET] 282

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

TAP — Test Access Port

The JTAG interface is accessed through four of the AVR’s pins. In JTAG terminology, these pins
constitute the Test Access Port — TAP. These pins are:

+ TMS: Test mode select. This pin is used for navigating through the TAP-controller state machine.
* TCK: Test clock. JTAG operation is synchronous to TCK.

« TDI: Test Data In. Serial input data to be shifted in to the Instruction Register or Data Register
(Scan Chains).

« TDO: Test Data Out. Serial output data from Instruction Register or Data Register.
The IEEE std. 1149.1 also specifies an optional TAP signal; TRST — Test ReSeT — which is not provided.

When the JTAGEN fuse is unprogrammed, these four TAP pins are normal port pins and the TAP
controller is in reset. When programmed and the JTD bit in MCUCSR is cleared, the TAP input signals
are internally pulled high and the JTAG is enabled for Boundary-scan and programming. In this case, the
TAP output pin (TDO) is left floating in states where the JTAG TAP controller is not shifting data, and must
therefore be connected to a pull-up resistor or other hardware having pull-ups (for instance the TDI-input
of the next device in the scan chain). The device is shipped with this fuse programmed.

For the On-chip Debug system, in addition to the JTAG interface pins, the RESET pin is monitored by the
debugger to be able to detect External Reset sources. The debugger can also pull the RESET pin low to
reset the whole system, assuming only open collectors on the Reset line are used in the application.

Figure 27-1. Block Diagram

1O PORT 0

L] L] L]
A
DEVICE BOUNDARY Y
|
> BOUNDARY SCAN CHAIN
™ g
DO <€ B »| I TAG PROGRAMMING
4 [TAP INTERFACE
TCK —»| CONTROLLER
™s —» |
| AVR CPU
INTERNAL
FLASH Address [SCAN < PC
INSTRUCTION MEMORY Data [cpAIN Instruction
REGISTER ;
J
D
REGISTER BREAKPOINT < >
UNIT
M [~ FLOW CONTROL[|
X REGISTER DIGITAL 2=, é
< 5 PERIPHERAL |« wa EEL <5
< UNITS zs% 2
Z s
BREAKPOINT = 2
SCAN CHAIN
\ X JTAG / AVR CORE
DDRESS A COMMUNICATION
DECODER 0OCD STATUS < ,| NTERFACE 2
AND CONTROL g =
-~
S
2
< < O
<2
£
¢ =
s
| 9]
|
A
N7
L] L] L]
O PORT n
AtmeL Atmel ATmega32A [DATASHEET] 283

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 27-2. TAP Controller State Diagram

1 C Test-Logic-Reset (¢

K

0 C Run-Test/Idle 1—} Select-DR Scan 1 P Select-IR Scan !
A
0 0
h 4 h 4
L Capture-DR L Capture-IR
0 0
v A 4
—»{ Shift-DR D 0 » Shif-IR D 0
1 1
v h 4
= o Exit]-DR ! — P Exitl-IR !
0 lO
A 4

Pause-DR D 0 Pause-IR D 0
1 il
4

Exit2-DR Exit2-IR
1 i 1
A 4
Update-DR €— Update-IR <
1 0 1 0

27.4. TAP Controller

The TAP controller is a 16-state finite state machine that controls the operation of the Boundary-scan
circuitry, JTAG programming circuitry, or On-chip Debug system. The state transitions depicted in Figure
27-2 depend on the signal present on TMS (shown adjacent to each state transition) at the time of the
rising edge at TCK. The initial state after a Power-on Reset is Test-Logic-Reset.

As a definition in this document, the LSB is shifted in and out first for all Shift Registers.
Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is:

* Atthe TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the Shift
Instruction Register — Shift-IR state. While in this state, shift the 4 bits of the JTAG instructions into
the JTAG instruction register from the TDI input at the rising edge of TCK. The TMS input must be

AtmeL Atmel ATmega32A [DATASHEET] 284

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

held low during input of the 3 LSBs in order to remain in the Shift-IR state. The MSB of the
instruction is shifted in when this state is left by setting TMS high. While the instruction is shifted in
from the TDI pin, the captured IR-state 0x01 is shifted out on the TDO pin. The JTAG Instruction
selects a particular Data Register as path between TDI and TDO and controls the circuitry
surrounding the selected Data Register.

* Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched onto
the parallel output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-IR, and
Exit2-IR states are only used for navigating the state machine.

« Atthe TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data
Register — Shift-DR state. While in this state, upload the selected Data Register (selected by the
present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising edge of
TCK. In order to remain in the Shift-DR state, the TMS input must be held low during input of all bits
except the MSB. The MSB of the data is shifted in when this state is left by setting TMS high. While
the Data Register is shifted in from the TDI pin, the parallel inputs to the Data Register captured in
the Capture-DR state is shifted out on the TDO pin.

* Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data Register
has a latched parallel-output, the latching takes place in the Update-DR state. The Exit-DR, Pause-
DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting JTAG
instruction and using Data Registers, and some JTAG instructions may select certain functions to be
performed in the Run- Test/Idle, making it unsuitable as an Idle state.

Note: 1. Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for 5 TCK clock periods.

For detailed information on the JTAG specification, refer to the literature listed in Bibliography.

Using the Boundary-scan Chain

A complete description of the Boundary-scan capabilities are given in the section IEEE 1149.1 (JTAG)
Boundary-scan.

Using the On-chip Debug System

As shown in Figure 27-1, the hardware support for On-chip Debugging consists mainly of:

* A scan chain on the interface between the internal AVR CPU and the internal peripheral units
* Break point unit
* Communication interface between the CPU and JTAG system

All read or modify/write operations needed for implementing the Debugger are done by applying AVR
instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O memory mapped
location which is part of the communication interface between the CPU and the JTAG system.

The Break point Unit implements Break on Change of Program Flow, Single Step Break, two Program
Memory Break points, and two combined break points. Together, the four break points can be configured
as either:

* 4 Single Program Memory break points
« 3 Single Program Memory break points + 1 single Data Memory break point
* 2 Single Program Memory break points + 2 single Data Memory break points

AtmeL Atmel ATmega32A [DATASHEET] 285

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

» 2 Single Program Memory break points + 1 Program Memory break point with mask (“range break
point”)

« 2 Single Program Memory break points + 1 Data Memory break point with mask (“range break
point”)

A debugger, like the Atmel Studio®, may however use one or more of these resources for its internal
purpose, leaving less flexibility to the end-user.

A list of the On-chip Debug specific JTAG instructions is given in On-chip Debug Specific JTAG
Instructions.

The JTAGEN fuse must be programmed to enable the JTAG Test Access Port. In addition, the OCDEN
fuse must be programmed and no Lock bits must be set for the On-chip Debug system to work. As a
security feature, the On-chip Debug system is disabled when any Lock bits are set. Otherwise, the On-
chip Debug system would have provided a back-door into a secured device.

The Atmel Studio enables the user to fully control execution of programs on an AVR device with On-chip
Debug capability, AVR In-Circuit Emulator, or the built-in AVR Instruction Set Simulator. Atmel Studio
supports source level execution of Assembly programs assembled with Atmel Corporation’s AVR
Assembler and C programs compiled with third party vendors’ compilers.

For a full description of the Atmel Studio, please refer to the Atmel Studio User Guide found in the
Online Help in Atmel Studio. Only highlights are presented in this document.

All necessary execution commands are available in Atmel Studio, both on source level and on
disassembly level. The user can execute the program, single step through the code either by tracing into
or stepping over functions, step out of functions, place the cursor on a statement and execute until the
statement is reached, stop the execution, and reset the execution target. In addition, the user can have
an unlimited number of code break points (using the BREAK instruction) and up to two data memory
break points, alternatively combined as a mask (range) break point.

On-chip Debug Specific JTAG Instructions

The On-chip debug support is considered being private JTAG instructions, and distributed within ATMEL
and to selected third-party vendors only. Instruction opcodes are listed for reference.

PRIVATEQ; 0x8
Private JTAG instruction for accessing On-chip Debug system.
PRIVATE1; 0x9
Private JTAG instruction for accessing On-chip Debug system.
PRIVATE2; 0xA
Private JTAG instruction for accessing On-chip Debug system.
PRIVATE3; 0xB

Private JTAG instruction for accessing On-chip Debug system.

Using the JTAG Programming Capabilities

Programming of AVR parts via JTAG is performed via the four-pin JTAG port, TCK, TMS, TDI, and TDO.
These are the only pins that need to be controlled/observed to perform JTAG programming (in addition to
power pins). It is not required to apply 12V externally. The JTAGEN fuse must be programmed and the
JTD bit in the MCUCSR Register must be cleared to enable the JTAG Test Access Port.

AtmeL Atmel ATmega32A [DATASHEET] 286

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

27.10.

27.10.1.

27.10.2.

The JTAG programming capability supports:

* Flash programming and verifying
« EEPROM programming and verifying
* Fuse programming and verifying
* Lock bit programming and verifying
The Lock bit security is exactly as in Parallel Programming mode. If the Lock bits LB1 or LB2 are

programmed, the OCDEN Fuse cannot be programmed unless first doing a chip erase. This is a security
feature that ensures no back-door exists for reading out the content of a secured device.

The details on programming through the JTAG interface and programming specific JTAG instructions are
given in the section Programming Via the JTAG Interface.

Related Links
Programming Via the JTAG Interface on page 345

Bibliography
For more information about general Boundary-scan, the following literature can be consulted:

« |EEE: IEEE Std 1149.1-1990. IEEE Standard Test Access Port and Boundary-scan Architecture,
IEEE, 1993

* Colin Maunder: The Board Designers Guide to Testable Logic Circuits, Addison-Wesley, 1992

IEEE 1149.1 (JTAG) Boundary-scan

Features
« JTAG (IEEE std. 1149.1 Compliant) Interface
* Boundary-scan Capabilities According to the JTAG Standard
* Full Scan of all Port Functions as well as Analog Circuitry having Off-chip Connections
* Supports the Optional IDCODE Instruction
* Additional Public AVR_RESET Instruction to Reset the AVR

System Overview

The Boundary-scan Chain has the capability of driving and observing the logic levels on the digital 1/0
pins, as well as the boundary between digital and analog logic for analog circuitry having off-chip
connections. At system level, all ICs having JTAG capabilities are connected serially by the TDI/TDO
signals to form a long Shift Register. An external controller sets up the devices to drive values at their
output pins, and observe the input values received from other devices. The controller compares the
received data with the expected result. In this way, Boundary-scan provides a mechanism for testing
interconnections and integrity of components on Printed Circuits Boards by using the four TAP signals
only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRELOAD, and
EXTEST, as well as the AVR specific public JTAG instruction AVR_RESET can be used for testing the
Printed Circuit Board. Initial scanning of the data register path will show the ID-code of the device, since
IDCODE is the default JTAG instruction. It may be desirable to have the AVR device in reset during test
mode. If not reset, inputs to the device may be determined by the scan operations, and the internal
software may be in an undetermined state when exiting the test mode. Entering Reset, the outputs of any
Port Pin will instantly enter the high impedance state, making the HIGHZ instruction redundant. If needed,

AtmeL Atmel ATmega32A [DATASHEET] 287

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

the BYPASS instruction can be issued to make the shortest possible scan chain through the device. The
device can be set in the Reset state either by pulling the external RESET pin low, or issuing the
AVR_RESET instruction with appropriate setting of the Reset Data Register.

The EXTEST instruction is used for sampling external pins and loading output pins with data. The data
from the output latch will be driven out on the pins as soon as the EXTEST instruction is loaded into the
JTAG IR-register. Therefore, the SAMPLE/PRELOAD should also be used for setting initial values to the
scan ring, to avoid damaging the board when issuing the EXTEST instruction for the first time. SAMPLE/
PRELOAD can also be used for taking a snapshot of the external pins during normal operation of the
part.

The JTAGEN fuse must be programmed and the JTD bit in the 1/O register MCUCSR must be cleared to
enable the JTAG Test Access Port.

When using the JTAG interface for Boundary-scan, using a JTAG TCK clock frequency higher than the
internal chip frequency is possible. The chip clock is not required to run.

27.11. Data Registers
The data registers relevant for Boundary-scan operations are:
* Bypass Register
« Device Identification Register
* Reset Register
* Boundary-scan Chain
27.11.1. Bypass Register
The Bypass Register consists of a single Shift Register stage. When the Bypass Register is selected as
path between TDI and TDO, the register is reset to 0 when leaving the Capture-DR controller state. The
Bypass Register can be used to shorten the scan chain on a system when the other devices are to be
tested.
27.11.2. Device Identification Register
The figure below shows the structure of the Device Identification Register.
Figure 27-3. The format of the Device Identification Register
MSB LSB
Bit 31 28 27 12 1 1 0
Device ID Version Part Number Manufacturer ID 1
4 bits 16 bits 11 bits 1-bit
27.11.2.1. Version
Version is a 4-bit number identifying the revision of the component. The JTAG version number follows the
revision of the device, and wraps around at revision P (OxF). Revision A and Q is 0x0, revision B and R is
0x1 and so on.
27.11.2.2. Part Number
The part number is a 16-bit code identifying the component. The JTAG Part Number for ATmega32A is
listed in the table below.
AtmeL Atmel ATmega32A [DATASHEET] 288

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 27-1. AVR JTAG Part Number

Part Number JTAG Part Number (Hex)

ATmega32A 0x9502

27.11.2.3. Manufacturer ID

The Manufacturer ID is a 11-bit code identifying the manufacturer. The JTAG manufacturer ID for ATMEL
is listed in the table below.

Table 27-2. Manufacturer ID

ATMEL 0x01F
27.11.3. Reset Register
The Reset Register is a Test Data Register used to reset the part. Since the AVR tri-states Port Pins
when reset, the Reset Register can also replace the function of the unimplemented optional JTAG
instruction HIGHZ.
A high value in the Reset Register corresponds to pulling the External Reset low. The part is reset as long
as there is a high value present in the Reset Register. Depending on the Fuse settings for the clock
options, the part will remain reset for a Reset Time-Out Period (refer to Clock Sources) after releasing the
Reset Register. The output from this Data Register is not latched, so the Reset will take place
immediately, as shown in the figure below.
Figure 27-4. Reset Register
To
TDO
From Other Internal and
External Reset Sources
From i_>—> Internal Reset
——AD Q
TDI
ClockDR - AVR_RESET
Related Links
Clock Sources on page 40
27.11.4. Boundary-scan Chain
The Boundary-scan Chain has the capability of driving and observing the logic levels on the digital 1/O
pins, as well as the boundary between digital and analog logic for analog circuitry having off-chip
connections. Refer to Boundary-scan Chain for a complete description.
AtmeL Atmel ATmega32A [DATASHEET] 289

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

27.12. Boundry-scan Specific JTAG Instructions
The Instruction Register is 4-bit wide, supporting up to 16 instructions. Listed below are the JTAG
instructions useful for Boundary-scan operation. Note that the optional HIGHZ instruction is not
implemented, but all outputs with tri-state capability can be set in high-impedant state by using the
AVR_RESET instruction, since the initial state for all port pins is tri-state.
As a definition in this data sheet, the LSB is shifted in and out first for all Shift Registers.
The OPCODE for each instruction is shown behind the instruction name in hex format. The text describes
which data register is selected as path between TDI and TDO for each instruction.
27.12.1. EXTEST; 0x0
Mandatory JTAG instruction for selecting the Boundary-scan Chain as Data Register for testing circuitry
external to the AVR package. For port-pins, Pull-up Disable, Output Control, Output Data, and Input Data
are all accessible in the scan chain. For Analog circuits having off-chip connections, the interface
between the analog and the digital logic is in the scan chain. The contents of the latched outputs of the
Boundary-scan chain is driven out as soon as the JTAG IR-register is loaded with the EXTEST
instruction.
The active states are:
« Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
« Shift-DR: The Internal Scan Chain is shifted by the TCK input.
* Update-DR: Data from the scan chain is applied to output pins.
27.12.2. IDCODE; 0x1
Optional JTAG instruction selecting the 32-bit ID Register as Data Register. The ID Register consists of a
version number, a device number and the manufacturer code chosen by JEDEC. This is the default
instruction after power-up.
The active states are:
« Capture-DR: Data in the IDCODE Register is sampled into the Boundary-scan Chain.
« Shift-DR: The IDCODE scan chain is shifted by the TCK input.
27.12.3. SAMPLE_PRELOAD; 0x2
Mandatory JTAG instruction for pre-loading the output latches and taking a snap-shot of the input/output
pins without affecting the system operation. However, the output latches are not connected to the pins.
The Boundary-scan Chain is selected as Data Register.
The active states are:
« Capture-DR: Data on the external pins are sampled into the Boundary-scan Chain.
« Shift-DR: The Boundary-scan Chain is shifted by the TCK input.
* Update-DR: Data from the Boundary-scan Chain is applied to the output latches. However, the
output latches are not connected to the pins.
27.12.4. AVR_RESET; 0xC
The AVR specific public JTAG instruction for forcing the AVR device into the Reset mode or releasing the
JTAG Reset source. The TAP controller is not reset by this instruction. The one bit Reset Register is
selected as Data Register. Note that the Reset will be active as long as there is a logic 'one' in the Reset
Chain. The output from this chain is not latched.
The active states are:
AtmeL Atmel ATmega32A [DATASHEET] 290

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

27.12.5.

27.13.

27.131.

« Shift-DR: The Reset Register is shifted by the TCK input.

BYPASS; OxF
Mandatory JTAG instruction selecting the Bypass Register for Data Register.

The active states are:

* Capture-DR: Loads a logic “0” into the Bypass Register.
« Shift-DR: The Bypass Register cell between TDI and TDO is shifted.

Boundary-scan Chain

The Boundary-scan chain has the capability of driving and observing the logic levels on the digital I/O
pins, as well as the boundary between digital and analog logic for analog circuitry having off-chip
connections.

Scanning the Digital Port Pins

The first figure below shows the Boundary-scan Cell for a bi-directional port pin with pull-up function. The
cell consists of a standard Boundary-scan cell for the Pull-up Enable — PUExn — function, and a bi-
directional pin cell that combines the three signals, Output Control — OCxn, Output Data — ODxn, and
Input Data — IDxn, into only a two-stage Shift Register. The port and pin indexes are not used in the
following description

The Boundary-scan logic is not included in the figures in the Data Sheet. Figure 27-6 shows a simple
digital Port Pin as described in the section I/O Ports. The Boundary-scan details from the first figure below
replaces the dashed box in Figure 27-6.

When no alternate port function is present, the Input Data — ID corresponds to the PINxn Register value
(but ID has no synchronizer), Output Data corresponds to the PORT Register, Output Control
corresponds to the Data Direction — DD Register, and the Pull-up Enable — PUExn — corresponds to logic
expression PUD - DDxn - PORTxn.

Digital alternate port functions are connected outside the dotted box in Figure 27-6 to make the scan
chain read the actual pin value. For Analog function, there is a direct connection from the external pin to
the analog circuit, and a scan chain is inserted on the interface between the digital logic and the analog
circuitry.

AtmeL Atmel ATmega32A [DATASHEET] 291

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 27-5. Boundary-scan Cell for Bi-directional Port Pin with Pull-Up Function.
ShiftDR To Next Cell EXTEST Vee

Pullup Enable (PUE)

S R B [

D Q
—G
’
Output Control (OC) "
FF1 LD1 0
0
D Q D Q !
1
| G

Output Data (OD)

FFO LDO 0
—[\/ [] PortPin (PXn)
b 1

Input Data (ID)

From Last Cell ClockDR Update DR

AtmeL Atmel ATmega32A [DATASHEET] 292

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 27-6. General Port Pin Schematic diagram

See Boundary-Scan description

for details!
—— == ==
| E :} i PUExn [k PUD
| —
| oD
|
| | T
| WDx
| RESET
| OCxn
5 _——— — | — =
b3 RD:
| 2 [X
| | I:l %)
| Pxn | Q D a
| N jopw roxte <
S =
IDxn WPx o
RESET
f— SLEEP : RRx
DL :
PUD: PULLUP DISABLE WDx: WRITE DDRx
PUExn: PULLUP ENABLE for pin Pxn RDx: READ DDRx
OCxn: OUTPUT CONTROL for pin Pxn WPx: WRITE PORTx
ODxn: OUTPUT DATA to pin Pxn RRx: READ PORTx REGISTER
IDxn: INPUT DATA from pin Pxn RPx: READ PORTx PIN
SLEEP: SLEEP CONTROL CLKyp: VO CLOCK

Related Links
|/O Ports on page 74

27.13.2. Boundary-scan and the Two-wire Interface
The two Two-wire Interface pins SCL and SDA have one additional control signal in the scan-chain; Two-
wire Interface Enable — TWIEN. As shown in the figure below, the TWIEN signal enables a tri-state buffer
with slew-rate control in parallel with the ordinary digital port pins. A general scan cell as shown in Figure
27-11 is attached to the TWIEN signal.

Note:

1. A separate scan chain for the 50ns spike filter on the input is not provided. The ordinary scan
support for digital port pins suffice for connectivity tests. The only reason for having TWIEN in the
scan path, is to be able to disconnect the slew-rate control buffer when doing boundary-scan.

2. Make sure the OC and TWIEN signals are not asserted simultaneously, as this will lead to drive
contention.

AtmeL Atmel ATmega32A [DATASHEET] 293

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 27-7. Additional Scan Signal for the Two-wire Interface

A

:I i: < PUExn

‘D
‘= OCxn
‘ J’l
ODxn
N
Pxn J" TWIEN
%
Slew-rate limited
IDxn

27.13.3. Scanning the RESET Pin

The RESET pin accepts 5V active low logic for standard Reset operation, and 12V active high logic for
High Voltage Parallel programming. An observe-only cell as shown in the figure below is inserted both for
the 5V Reset signal; RSTT, and the 12V Reset signal; RSTHV.

Figure 27-8. Observe-only Cell

To
next
ShiftDR cell
[A
From system pin > . > To system logic
FF1
D Q—

From ClockDR
previous
cell

27.13.4. Scanning the Clock Pins

The AVR devices have many clock options selectable by fuses. These are: Internal RC Oscillator,
External RC, External Clock, (High Frequency) Crystal Oscillator, Low-frequency Crystal Oscillator, and
Ceramic Resonator.

AtmeL Atmel ATmega32A [DATASHEET] 294

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

The figure below shows how each Oscillator with external connection is supported in the scan chain. The
Enable signal is supported with a general boundary-scan cell, while the Oscillator/Clock output is
attached to an observe-only cell. In addition to the main clock, the Timer Oscillator is scanned in the same
way. The output from the internal RC Oscillator is not scanned, as this Oscillator does not have external
connections.

Figure 27-9. Boundary-scan Cells for Oscillators and Clock Options

XTALL/TOSC1 XTAL2/TOSC2
To
Next To
ShiffDR Cell EXTEST Oscillator next
{ ShiftDR cell
From Digital Logic 4 0 I I

ENABLE OUTPUT To System Logic
1
FF1
D Qr*—D Q
D
P h |

From ClockDR UpdateDR
Previous From ClockDR
Cell Previous
Cell

The following table summaries the scan registers for the external clock pin XTAL1, oscillators with XTAL1/
XTALZ2 connections as well as 32kHz Timer Oscillator.

Table 27-3. Scan Signals for the Oscillators(")(2)()

Enable signal | Scanned Clock Line | Clock Option Scanned Clock Line when not
Used

EXTCLKEN EXTCLK (XTAL1) External Clock

OSCON OSCCK External Crystal 0
External Ceramic Resonator

RCOSCEN RCCK External RC 1
OSC32EN 0OSC32CK Low Freq. External Crystal 0
TOSKON TOSCK 32kHz Timer Oscillator 0
Note:

1. Do not enable more than one clock source as main clock at a time.

2. Scanning an Oscillator output gives unpredictable results as there is a frequency drift between the
Internal Oscillator and the JTAG TCK clock. If possible, scanning an external clock is preferred.

3. The clock configuration is programmed by fuses. As a fuse does not change run-time, the clock
configuration is considered fixed for a given application. The user is advised to scan the same clock
option as to be used in the final system. The enable signals are supported in the scan chain
because the system logic can disable clock options in sleep modes, thereby disconnecting the
Oscillator pins from the scan path if not provided. The INTCAP fuses are not supported in the scan-

AtmeL Atmel ATmega32A [DATASHEET] 295

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

chain, so the boundary scan chain can not make a XTAL Oscillator requiring internal capacitors to

run unless the fuse is correctly programmed.

27.13.5. Scanning the Analog Comparator
The relevant Comparator signals regarding Boundary-scan are shown in the first figure below. The
Boundary-scan cell from the second figure below is attached to each of these signals. The signals are

described in Table 27-4,
The Comparator need not be used for pure connectivity testing, since all analog inputs are shared with a

digital port pin as well.
Figure 27-10. Analog comparator

EXTEST

0
To Analog Circuitry/
To Digital Logic

BANDGAP
REFERENCE VCC

ACBG

ACD —>»

AINO
+
AIN1 —Bg—
AC_IDLE
ACME |
ADCEN —(
ADC MULTIPLEXER
OUTPUT >
Psd
Figure 27-11. General Boundary-scan Cell used for Signals for Comparator and ADC
To

Next

ShiftDR Cell
From Digital Logic/ > L [

From Analog Ciruitry
0
D Q Q
1
— G
From ClockDR UpdateDR
Previous

Cell

Atmel

Atmel ATmega32A [DATASHEET] 296

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Table 27-4. Boundary-scan Signals for the Analog Comparator

Signal Direction as Description Recommended Input | Output values when
Name Seen from the when not in Use Recommended Inputs
Comparator are Used

AC_IDLE Input Turns off Analog 1 Depends upon uC code
comparator when being executed
true

ACO Output Analog Comparator Will become inputto 0
Output MC code being

executed

ACME Input Uses output signal |0 Depends upon uC code
from ADC mux being executed
when true

ACBG Input Bandgap Reference 0 Depends upon uC code
enable being executed

27.13.6. Scanning the ADC

The figure below shows a block diagram of the ADC with all relevant control and observe signals. The
Boundary-scan cell from Figure 27-8 is attached to each of these signals. The ADC need not be used for
pure connectivity testing, since all analog inputs are shared with a digital port pin as well.

Figure 27-12. Analog to Digital Converter

VCCREN), AN
AREF), >

IREFEN,

» To Comparator b >

PASSEN).

MUXEN_6 -
ac oy
MUXEN_5
avc sy

MUXEN_4 SCTEST ADCBGEN
ADC_4 P’y >
EXTCH b 3 PRECH

NEGSEL 2 10x
ADC_2 P - -
NEGSEL 1
ADC_1 g
ST

NEGSEL
GSEL_0 ACLK

AMPEN

The signals are described briefly in the following table.

AtmeL Atmel ATmega32A [DATASHEET] 297

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Table 27-5. Boundary-scan Signals for the ADC

Signal Name | Direction as | Description

COMP
ACLK

ACTEN
ADCBGEN

ADCEN
AMPEN

DAC_9
DAC_8
DAC_7
DAC_6
DAC_5
DAC_4
DAC_3
DAC_2
DAC_1
DAC_0
EXTCH

G10
G20
GNDEN

Atmel

Seen from
the ADC

Output
Input

Input

Input

Input
Input

Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input

Input
Input
Input

Comparator Output

Clock signal to gain stages
implemented as Switch-cap
filters

Enable path from gain stages

to the comparator

Enable Band-gap reference as

negative input to comparator
Power-on signal to the ADC

Power-on signal to the gain
stages

Bit 9 of digital value to DAC
Bit 8 of digital value to DAC
Bit 7 of digital value to DAC
Bit 6 of digital value to DAC
Bit 5 of digital value to DAC
Bit 4 of digital value to DAC
Bit 3 of digital value to DAC
Bit 2 of digital value to DAC
Bit 1 of digital value to DAC
Bit O of digital value to DAC

Connect ADC channels 0 - 3 to

by-pass path around gain
stages

Enable 10x gain
Enable 20x gain

Ground the negative input to
comparator when true

Recommended Output Values
Input when not in | when
Use Recommended

o

- O O O O o o o o o =~

o

Inputs are Used,
and CPU is not
Using the ADC

1

O O O O o o o o o

—_

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

298

Signal Name | Direction as | Description Recommended Output Values

Seen from Input when not in | when

the ADC Use Recommended
Inputs are Used,
and CPU is not
Using the ADC

HOLD Input Sample & Hold signal. Sample 1 1
analog signal when low. Hold
signal when high. If gain
stages are used, this signal
must go active when ACLK is
high.
IREFEN Input Enables Band-gap reference 0 0
as AREF signal to DAC
MUXEN_7 Input Input Mux bit 7 0 0
MUXEN_6 Input Input Mux bit 6 0 0
MUXEN_5 Input Input Mux bit 5 0 0
MUXEN_4 Input Input Mux bit 4 0 0
MUXEN_3 Input Input Mux bit 3 0 0
MUXEN_2 Input Input Mux bit 2 0 0
MUXEN_1 Input Input Mux bit 1 0 0
MUXEN_0O Input Input Mux bit 0 1 1
NEGSEL_2 | Input Input Mux for negative input for 0 0
differential signal, bit 2
NEGSEL_1 Input Input Mux for negative input for 0 0
differential signal, bit 1
NEGSEL_O | Input Input Mux for negative input for | 0 0
differential signal, bit 0
PASSEN Input Enable pass-gate of gain 1 1
stages.
PRECH Input Precharge output latch of 1 1
comparator. (Active low)
SCTEST Input Switch-cap TEST enable. 0 0
Output from x10 gain stage
send out to Port Pin having
ADC 4
AtmeL Atmel ATmega32A [DATASHEET] 299

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Signal Name | Direction as | Description Recommended Output Values

Seen from Input when not in | when

the ADC Use Recommended
Inputs are Used,
and CPU is not
Using the ADC

ST Input Output of gain stages will 0 0
settle faster if this signal is
high first two ACLK periods
after AMPEN goes high.

VCCREN Input Selects Vcc as the ACC 0 0

reference voltage.

Note: 1. Incorrect setting of the switches in Figure 27-12 will make signal contention and may damage
the part. There are several input choices to the S&H circuitry on the negative input of the output
comparator in Figure 27-12. Make sure only one path is selected from either one ADC pin, Bandgap
reference source, or Ground.

If the ADC is not to be used during scan, the recommended input values from the table above should be
used. The user is recommended not to use the Differential Gain stages during scan. Switch-Cap based
gain stages require fast operation and accurate timing which is difficult to obtain when used in a scan
chain. Details concerning operations of the differential gain stage is therefore not provided.

The AVR ADC is based on the analog circuitry shown in Figure 27-12 with a successive approximation
algorithm implemented in the digital logic. When used in Boundary-scan, the problem is usually to ensure
that an applied analog voltage is measured within some limits. This can easily be done without running a
successive approximation algorithm: apply the lower limit on the digital DAC[9:0] lines, make sure the
output from the comparator is low, then apply the upper limit on the digital DAC[9:0] lines, and verify the
output from the comparator to be high.

The ADC need not be used for pure connectivity testing, since all analog inputs are shared with a digital
port pin as well.

When using the ADC, remember the following:

* The Port Pin for the ADC channel in use must be configured to be an input with pull-up disabled to
avoid signal contention.

* In normal mode, a dummy conversion (consisting of 10 comparisons) is performed when enabling
the ADC. The user is advised to wait at least 200ns after enabling the ADC before controlling/
observing any ADC signal, or perform a dummy conversion before using the first result.

* The DAC values must be stable at the midpoint value 0x200 when having the HOLD signal low
(Sample mode).

As an example, consider the task of verifying a 1.5V 5% input signal at ADC channel 3 when the power
supply is 5.0V and AREF is externally connected to V¢c.

The lower limit is: 1024 - 1,5V - 0,95/5V = 291 = 0x123

The upper limit is: 1024 - 1,5V - 1,05/5V = 323 = 0x143
The recommended values from Table 27-5 are used unless other values are given in the algorithm in the

following table. Only the DAC and Port Pin values of the Scan Chain are shown. The column “Actions”
describes what JTAG instruction to be used before filling the Boundary-scan Register with the succeeding

AtmeL Atmel ATmega32A [DATASHEET] 300

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

columns. The verification should be done on the data scanned out when scanning in the data on the
same row in the table.

Table 27-6. Algorithm for Using the ADC

ﬁ ADCEN MUXEN HOLD | PRECH | PA3. Data | PA3. Control | PA3. Pullup_
Enable

SAMPLE_P 0x200
RELOAD
2 EXTEST 1 0x200
3 1 0x200
4 1 0x123
5 1 0x123
6 Verify the COMP bit 1 0x200
scanned out to be 0
7 1 0x200
8 1 0x200
9 1 0x143
10 1 0x143
11 | Verify the COMP bit |1 0x200

scanned out to be 1

0x08

0x08
0x08
0x08
0x08
0x08

0x08
0x08
0x08
0x08
0x08

o O o o o

o O o o o

o O o o o
o O o o o

o o o o o
O O o o o

Using this algorithm, the timing constraint on the HOLD signal constrains the TCK clock frequency. As the
algorithm keeps HOLD high for five steps, the TCK clock frequency has to be at least five times the

number of scan bits divided by the maximum hold time, thoig max

27.14. ATmega32A Boundary-scan Order

The table below shows the Scan order between TDI and TDO when the Boundary-scan Chain is selected
as data path. Bit 0 is the LSB; the first bit scanned in, and the first bit scanned out. The scan order follows
the pin-out order as far as possible. Therefore, the bits of Port A are scanned in the opposite bit order of

the other ports.

Exceptions from the rules are the scan chains for the analog circuits, which constitute the most significant
bits of the scan chain regardless of which physical pin they are connected to. In Figure 27-5, PXn. Data
corresponds to FFO, PXn. Control corresponds to FF1, and PXn. Pullup_enable corresponds to FF2. Bit
2, 3, 4, and 5 of Port C is not in the scan chain, since these pins constitute the TAP pins when the JTAG

is enabled.

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

301

Table 27-7. ATmega32A Boundary-scan Order

140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
12

Atmel

AC_IDLE
ACO
ACME
ACBG
COMP
PRIVATE_SIGNAL1(")
ACLK
ACTEN
PRIVATE_SIGNAL2(?)
ADCBGEN
ADCEN
AMPEN
DAC_9
DAC_8
DAC_7
DAC_6
DAC_5
DAC_4
DAC_3
DAC_2
DAC_1
DAC_0
EXTCH
G10

G20
GNDEN
HOLD
IREFEN
MUXEN_7

Comparator

ADC

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

302

i MUXEN_6 ADC
110 MUXEN_5
109 MUXEN_4
108 MUXEN_3
107 MUXEN_2
106 MUXEN_1
105 MUXEN_0
104 NEGSEL_2
103 NEGSEL_1
102 NEGSEL_0
101 PASSEN
100 PRECH

99 SCTEST
08 ST

97 VCCREN

AtmeL Atmel ATmega32A [DATASHEET] 303

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

96 PBO0.Data Port B

95 PBO0.Control

94 PBO.Pullup_Enable

93 PB1.Data

92 PB1.Control

91 PB1.Pullup_Enable

90 PB2.Data

89 PB2.Control

88 PB2.Pullup_Enable

87 PB3.Data

86 PB3.Control

85 PB3.Pullup_Enable

84 PB4.Data

83 PB4.Control

82 PB4.Pullup_Enable

81 PB5.Data

80 PB5.Control

79 PB5.Pullup_Enable

78 PB6.Data

77 PB6.Control

76 PB6.Pullup_Enable

75 PB7.Data

74 PB7.Control

73 PB7.Pullup_Enable

72 RSTT Reset Logic
71 RSTHV (Observe-only)
70 EXTCLKEN Enable signals for main Clock/Oscillators
69 OSCON

68 RCOSCEN

67 OSC32EN

AtmeL Atmel ATmega32A [DATASHEET] 304

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

66 EXTCLK (XTAL1) Clock input and Oscillators for the main clock
65 0SCCK (Observe-only)
64 RCCK

63 0OSC32CK

62 TWIEN TWI
61 PDO0.Data Port D
60 PDO.Control

59 PDO.Pullup_Enable

58 PD1.Data

57 PD1.Control

56 PD1.Pullup_Enable

55 PD2.Data

54 PD2.Control

53 PD2.Pullup_Enable

52 PD3.Data

51 PD3.Control

50 PD3.Pullup_Enable

49 PD4.Data

48 PD4.Control

47 PD4.Pullup_Enable

46 PD5.Data

45 PD5.Control

44 PD5.Pullup_Enable

43 PD6.Data

42 PD6.Control

41 PDG6.Pullup_Enable

40 PD7.Data

39 PD7.Control

38 PD7.Pullup_Enable

AtmeL Atmel ATmega32A [DATASHEET] 305

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Atmel

PCO0.Data
PCO.Control
PCO.Pullup_Enable
PC1.Data
PC1.Control
PC1.Pullup_Enable
PC6.Data
PC6.Control
PC6.Pullup_Enable
PC7.Data
PC7.Control
PC7.Pullup_Enable
TOSC

TOSCON

Port C

32kHz Timer Oscillator

Atmel ATmega32A [DATASHEET] 306
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

23 PA7.Data Port A
22 PA7.Control

21 PA7.Pullup_Enable
20 PAG6.Data

19 PA6.Control

18 PA6.Pullup_Enable
17 PA5.Data

16 PA5.Control

15 PA5.Pullup_Enable
14 PA4.Data

13 PA4.Control

12 PA4 .Pullup_Enable
11 PA3.Data

10 PA3.Control

9 PA3.Pullup_Enable
8 PA2.Data

7 PA2.Control

6 PA2.Pullup_Enable
5 PA1.Data

4 PA1.Control

3 PA1.Pullup_Enable
2 PAO.Data

1 PAO.Control

0 PAO.Pullup_Enable
Note:

1. PRIVATE_SIGNAL1 should always scanned in as zero.
2. PRIVATE_SIGNALZ2 should always scanned in as zero.

27.15. Boundary-scan Description Language Files

Boundary-scan Description Language (BSDL) files describe Boundary-scan capable devices in a
standard format used by automated test-generation software. The order and function of bits in the
Boundary-scan Data Register are included in this description.

AtmeL Atmel ATmega32A [DATASHEET] 307

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

27.16. Register Description

Atmel Atmel ATmega32A [DATASHEET] 308

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

27.16.1. OCDR - On-chip Debug Register

When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: OCDR

Offset: 0x31

Reset: 0x20

Property: When addressing I/O Registers as data space the offset address is 0x51

7 6 5 4 3 2 1 0
IDRD/OCDR?7 OCDRG6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDRO
R/W R/wW R/W R/W R/wW R/W R/wW R/W
0 0 0 0 0 0 0 0

Bit 7 — IDRD/OCDR?7: USART Receive Complete

The OCDR Register provides a communication channel from the running program in the microcontroller
to the debugger. The CPU can transfer a byte to the debugger by writing to this location. At the same
time, an internal flag; 1/0 Debug Register Dirty — IDRD — is set to indicate to the debugger that the
register has been written. When the CPU reads the OCDR Register the 7 LSB will be from the OCDR
Register, while the MSB is the IDRD bit. The debugger clears the IDRD bit when it has read the
information.

In some AVR devices, this register is shared with a standard I/O location. In this case, the OCDR Register
can only be accessed if the OCDEN fuse is programmed, and the debugger enables access to the OCDR
Register. In all other cases, the standard I/O location is accessed.

+ Bit7is MSB
 Bit1isLSB

Refer to the debugger documentation for further information on how to use this register.

Bits 6:0 — OCDRn: On-chip Debug Register n [n = 6:0]

AtmeL Atmel ATmega32A [DATASHEET] 309

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

27.16.2. MCUCSR - MCU Control and Status Register
When using the /O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing 1/0 Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.
The MCU Control and Status Register contains control bits for general MCU functions, and provides
information on which reset source caused an MCU Reset.
Name: MCUCSR
Offset: 0x34
Reset: 0x20
Property: When addressing I/O Registers as data space the offset address is 0x54
Bit 7 6 5 4 3 2 1 0
JTD JTRF
Access R/W R/W
Reset 0
Bit 7 — JTD: JTAG Interface Disable
When this bit is zero, the JTAG interface is enabled if the JTAGEN fuse is programmed. If this bit is one,
the JTAG interface is disabled. In order to avoid unintentional disabling or enabling of the JTAG interface,
a timed sequence must be followed when changing this bit: The application software must write this bit to
the desired value twice within four cycles to change its value.
If the JTAG interface is left unconnected to other JTAG circuitry, the JTD bit should be set to one. The
reason for this is to avoid static current at the TDO pin in the JTAG interface.
Bit 4 - JTRF: JTAG Reset Flag
This bit is set if a Reset is being caused by a logic one in the JTAG Reset Register selected by the JTAG
instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic zero to the flag.
AtmeL Atmel ATmega32A [DATASHEET] 310

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

28.

BTLDR - Boot Loader Support — Read-While-Write Self-Programming

28.1. Features
* Read-While-Write Self-Programming
* Flexible Boot Memory Size
* High Security (Separate Boot Lock Bits for a Flexible Protection)
+ Separate Fuse to Select Reset Vector
« Optimized Page!) Size
+ Code Efficient Algorithm
« Efficient Read-Modify-Write Support
Note: 1. A page is a section in the Flash consisting of several bytes (see Table. No. of Words in a Page
and No. of Pages in the Flash in Signal Names) used during programming. The page organization does
not affect normal operation.
Related Links
Signal Names on page 331
28.2. Overview
In this device, the Boot Loader Support provides a real Read-While-Write Self-Programming mechanism
for downloading and uploading program code by the MCU itself. This feature allows flexible application
software updates controlled by the MCU using a Flash-resident Boot Loader program. The Boot Loader
program can use any available data interface and associated protocol to read code and write (program)
that code into the Flash memory, or read the code from the program memory. The program code within
the Boot Loader section has the capability to write into the entire Flash, including the Boot Loader
memory. The Boot Loader can thus even modify itself, and it can also erase itself from the code if the
feature is not needed anymore. The size of the Boot Loader memory is configurable with fuses and the
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This gives the user
a unique flexibility to select different levels of protection.
28.3. Application and Boot Loader Flash Sections
The Flash memory is organized in two main sections, the Application section and the Boot Loader
section. The size of the different sections is configured by the BOOTSZ Fuses. These two sections can
have different level of protection since they have different sets of Lock bits.
28.3.1. Application Section
The Application section is the section of the Flash that is used for storing the application code. The
protection level for the Application section can be selected by the application Boot Lock bits (Boot Lock
bits 0). The Application section can never store any Boot Loader code since the SPM instruction is
disabled when executed from the Application section.
28.3.2. BLS - Boot Loader Section
While the Application section is used for storing the application code, the Boot Loader software must be
located in the BLS since the SPM instruction can initiate a programming when executing from the BLS
only. The SPM instruction can access the entire Flash, including the BLS itself. The protection level for
the Boot Loader section can be selected by the Boot Loader Lock bits (Boot Lock bits 1).
AtmeL Atmel ATmega32A [DATASHEET] 311

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

28.4.1.

28.4.2,

Read-While-Write and No Read-While-Write Flash Sections

Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader software
update is dependent on which address that is being programmed. In addition to the two sections that are
configurable by the BOOTSZ Fuses as described above, the Flash is also divided into two fixed sections,
the Read-While-Write (RWW) section and the No Read-While-Write (NRWW) section. The limit between
the RWW- and NRWW sections is given in the Boot Loader Parameters section and Figure 28-2. The
main difference between the two sections is:

* When erasing or writing a page located inside the RWW section, the NRWW section can be read
during the operation

* When erasing or writing a page located inside the NRWW section, the CPU is halted during the
entire operation

The user software can never read any code that is located inside the RWW section during a Boot Loader
software operation. The syntax “Read-While-Write section” refers to which section that is being
programmed (erased or written), not which section that actually is being read during a Boot Loader
software update.

Related Links
ATmega32A Boot Loader Parameters on page 323

RWW - Read-While-Write Section

If a Boot Loader software update is programming a page inside the RWW section, it is possible to read
code from the Flash, but only code that is located in the NRWW section. During an on-going
programming, the software must ensure that the RWW section never is being read. If the user software is
trying to read code that is located inside the RWW section (i.e. by a call/rimp/lpm or an interrupt) during
programming, the software might end up in an unknown state. To avoid this, the interrupts should either
be disabled or moved to the Boot Loader section. The Boot Loader section is always located in the
NRWW section. The RWW Section Busy bit (RWWSB) in the Store Program Memory Control Register
(SPMCR) will be read as logical one as long as the RWW section is blocked for reading. After a
programming is completed, the RWWSB must be cleared by software before reading code located in the
RWW section. Please refer to SPMCR — Store Program Memory Control Register in this chapter for
details on how to clear RWWSB.

NRWW - No Read-While-Write Section

The code located in the NRWW section can be read when the Boot Loader software is updating a page in
the RWW section. When the Boot Loader code updates the NRWW section, the CPU is halted during the
entire Page Erase or Page Write operation.

Table 28-1. Read-While-Write Features

Which Section does the Z- Which Section can be read | CPU Halted? | Read-While-Write

pointer Address during the during Programming? Supported?
Programming?

RWW Section NRWW Section No Yes
NRWW Section None Yes No

AtmeL Atmel ATmega32A [DATASHEET] 312

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 28-1. Read-While-Write vs. No Read-While-Write

Z-pointer
Addresses RWW
Section

Read-While-Write
(RWW) Section

No Read-While-Write
(NRWW) Section

Z-pointer
Addresses NRWW
Section

CPU is Halted
During the Operation

Code Located in f
NRWW Section

Can be Read During
the Operation

Atmel

Atmel ATmega32A [DATASHEET] 313
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 28-2. Memory Sections

Program Memory Program Memory
BOOTSZ ="11' BOOTSZ ="'10'
B 0x0000 [0x0000
g g
3 3
e 2
§ Application Flash Section § Application Flash Section
5)
= =
z z
=} =
s <
& &

gL _ _ _ __ _ __ _|EndRWW s _ _ _ _ _ _ _|FndrRWW
3 Start NRWW s Start NRWW
© %
2 L L .
‘é Application Flash Section § Application Flash Section
& 5
= = End Application
i End Application E Start Boot Loader
] 3 Boot Loader Flash Section
~ Boot Loader Flash Section Start Boot Loader &
o L Flashend o L— Flashend
z z

Program Memory Program Memory

BOOTSZ ="'01' BOOTSZ ="'00'
— 0x0000 — 0x0000

= =
g .S
g 8
%) @
2 2
“B: Application Flash Section § Application Flash Section
2 B
= =
= =
] g
g 5
[~4 &
s / . | / End RWW, End Application
s — = T T T 7 T |sttnrww S [= T T T T T T|Start NRWW, Start Boot Loader
©n
Q Application Flash Section ﬁ
£ £
B. End Application 3. A
2 2 Boot Loader Flash Section
§ Start Boot Loader .;
_,g Boot Loader Flash Section _g
2] Q
o~ [~4
o L— Flashend o L— Flashend
Z Z
Related Links

ATmega32A Boot Loader Parameters on page 323

28.5. Boot Loader Lock Bits

If no Boot Loader capability is needed, the entire Flash is available for application code. The Boot Loader
has two separate sets of Boot Lock bits which can be set independently. This gives the user a unique
flexibility to select different levels of protection.

The user can select:

« To protect the entire Flash from a software update by the MCU
* To protect only the Boot Loader Flash section from a software update by the MCU

AtmeL Atmel ATmega32A [DATASHEET] 314

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

28.6.

« To protect only the Application Flash section from a software update by the MCU
» Allow software update in the entire Flash

The Boot Lock bits can be set in software and in Serial or Parallel Programming mode, but they can be
cleared by a Chip Erase command only. The general Write Lock (Lock Bit mode 2) does not control the
programming of the Flash memory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit
mode 1) does not control reading nor writing by LPM/SPM, if it is attempted.

Table 28-2. Boot Lock Bit0 Protection Modes (Application Section)

BLBO BLB02 | BLB01 | Protection
Mode

No restrictions for SPM or LPM accessing the Application section.
2 1 0 SPM is not allowed to write to the Application section.

3 0 0 SPM is not allowed to write to the Application section, and LPM executing
from the Boot Loader section is not allowed to read from the Application
section. If Interrupt Vectors are placed in the Boot Loader section,
interrupts are disabled while executing from the Application section.

4 0 1 LPM executing from the Boot Loader section is not allowed to read from
the Application section. If Interrupt Vectors are placed in the Boot Loader
section, interrupts are disabled while executing from the Application
section.

Note: “1” means unprogrammed, “0” means programmed.

Table 28-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)

BLB1 BLB12 | BLB11 | Protection
Mode

No restrictions for SPM or LPM accessing the Boot Loader section.
2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0 SPM is not allowed to write to the Boot Loader section, and LPM executing
from the Application section is not allowed to read from the Boot Loader
section. If Interrupt Vectors are placed in the Application section, interrupts
are disabled while executing from the Boot Loader section.

4 0 1 LPM executing from the Application section is not allowed to read from the
Boot Loader section. If Interrupt Vectors are placed in the Application
section, interrupts are disabled while executing from the Boot Loader
section.

Note: “1” means unprogrammed, “0” means programmed.

Entering the Boot Loader Program

Entering the Boot Loader takes place by a jump or call from the application program. This may be initiated
by a trigger such as a command received via USART, or SPI interface. Alternatively, the Boot Reset Fuse
can be programmed so that the Reset Vector is pointing to the Boot Flash start address after a reset. In
this case, the Boot Loader is started after a reset. After the application code is loaded, the program can
start executing the application code. The fuses cannot be changed by the MCU itself. This means that

AtmeL Atmel ATmega32A [DATASHEET] 315

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

once the Boot Reset Fuse is programmed, the Reset Vector will always point to the Boot Loader Reset
and the fuse can only be changed through the serial or parallel programming interface.

Table 28-4. Boot Reset Fuse

BOOTRST |Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset, as described by the Boot Loader Parameters

Note: '1' means unprogrammed, '0' means programmed.

Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.

Bit 15 14 13 12 11 10 a g8

ZH (R31) I Z15 Z14 Z13 212 Z11 Z10 Z9 Z8

ZH (R31) I Z7 Z6 Z5 Z4 Z3 22 Z1 0

Bit 7 B] 4 3 2 1 0

Since the Flash is organized in pages, the Program Counter can be treated as having two different
sections. One section, consisting of the least significant bits, is addressing the words within a page, while
the most significant bits are addressing the pages. This is shown in the following figure. The Page Erase
and Page Write operations are addressed independently. Therefore it is of major importance that the Boot
Loader software addresses the same page in both the Page Erase and Page Write operation. Once a
programming operation is initiated, the address is latched and the Z-pointer can be used for other
operations.

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits. The content
of the Z-pointer is ignored and will have no effect on the operation. The LPM instruction does also use the
Z-pointer to store the address. Since this instruction addresses the Flash byte-by-byte, also the LSB (bit
Z0) of the Z-pointer is used.

AtmeL Atmel ATmega32A [DATASHEET] 316

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 28-3. Addressing the Flash During SPM(")

BIT 15 ZPCMSB ZPAGEMSB 1 0
7 - REGISTER 0
PCMSB PAGEMSB
PROGRAM
COUNTER PCPAGE PCWORD
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE
PROGRAM MEMORY PAGE
PAGE I INSTRUCTION WORD

Note:

PCWORD[PAGEMSB:0]:

PAGEEND

Fo the different variables used in the figure, see the table of the different variables used and the
Mapping to the Z-pointer in the boot loader parameters section.
PCPAGE and PCWORD are listed in table Number of Words in a Page and number of Pages in the
Flash in the Signal Names section.

Related Links

Signal

Names on page 331

ATmega32A Boot Loader Parameters on page 323

Self-Programming the Flash

The program memory is updated in a page by page fashion. Before programming a page with the data
stored in the temporary page buffer, the page must be erased. The temporary page buffer is filled one
word at a time using SPM and the buffer can be filled either before the Page Erase command or between
a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

Fill temporary page buffer
Perform a Page Erase
Perform a Page Write

Alternative 2, fill the buffer after Page Erase

Atmel

Perform a Page Erase

Atmel ATmega32A [DATASHEET]

317

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

28.8.1.

28.8.2.

28.8.3.

28.8.4.

« Fill temporary page buffer
* Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for example in the
temporary page buffer) before the erase, and then be rewritten. When using alternative 1, the Boot
Loader provides an effective Read-Modify-Write feature which allows the user software to first read the
page, do the necessary changes, and then write back the modified data. If alternative 2 is used, it is not
possible to read the old data while loading since the page is already erased. The temporary page buffer
can be accessed in a random sequence. It is essential that the page address used in both the Page
Erase and Page Write operation is addressing the same page. Please refer to Simple Assembly Code
Example for a Boot Loader for an assembly code example.

Performing Page Erase by SPM

To execute page erase, set up the address in the Z-pointer, write “X0000011” to SPMCR and execute
SPM within four clock cycles after writing SPMCR. The data in R1 and RO is ignored. The page address
must be written to PCPAGE in the Z-register. Other bits in the Z-pointer will be ignored during this
operation.

» Page Erase to the RWW section: The NRWW section can be read during the Page Erase.
* Page Erase to the NRWW section: The CPU is halted during the operation.

Note: If an interrupt occurs in the timed sequence the four cycle access cannot be guaranteed. In order
to ensure atomic operation disable interrupts before writing to SPMCSR.

Filling the Temporary Buffer (Page Loading)

To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write “00000001” to
SPMCR and execute SPM within four clock cycles after writing SPMCR. The content of PCWORD in the
Z-register is used to address the data in the temporary page buffer. The temporary buffer will auto-erase
after a page write operation or by writing the RWWSRE bit in SPMCR. It is also erased after a System
Reset. Note that it is not possible to write more than one time to each address without erasing the
temporary buffer.

Note: If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

Performing a Page Write

To execute page write, set up the address in the Z-pointer, write “X0000101” to SPMCR and execute
SPM within four clock cycles after writing SPMCR. The data in R1 and RO is ignored. The page address
must be written to PCPAGE. Other bits in the Z-pointer must be written to zero during this operation.

« Page Write to the RWW section: The NRWW section can be read during the Page Write
+ Page Write to the NRWW section: The CPU is halted during the operation

Note: If an interrupt occurs in the timed sequence the four cycle access cannot be guaranteed. In order
to ensure atomic operation disable interrupts before writing to SPMCSR.

Using the SPM Interrupt

If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the SPMEN bit
in SPMCR is cleared. This means that the interrupt can be used instead of polling the SPMCR Register in
software. When using the SPM interrupt, the Interrupt Vectors should be moved to the BLS section to
avoid that an interrupt is accessing the RWW section when it is blocked for reading. How to move the
interrupts is described in Interrupts chapter.

Related Links

AtmeL Atmel ATmega32A [DATASHEET] 318

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

28.8.5.

28.8.6.

28.8.7.

28.8.8.

28.8.9.

Interrupts on page 62

Consideration While Updating Boot Loader Section (BLS)

Special care must be taken if the user allows the Boot Loader Section (BLS) to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the entire Boot
Loader, and further software updates might be impossible. If it is not necessary to change the Boot
Loader software itself, it is recommended to program the Boot Lock bit11 to protect the Boot Loader
software from any internal software changes.

Prevent Reading the RWW Section During Self-Programming

During Self-Programming (either page erase or page write), the RWW section is always blocked for
reading. The user software itself must prevent that this section is addressed during the self programming
operation. The RWWSB in the SPMCR will be set as long as the RWW section is busy. During Self-
Programming the Interrupt Vector table should be moved to the BLS as described in Interrupts, or the
interrupts must be disabled. Before addressing the RWW section after the programming is completed, the
user software must clear the RWWSB by writing the RWWSRE. Please refer to Simple Assembly Code
Example for a Boot Loader for an example.

Related Links

[nterrupts on page 62

Setting the Boot Loader Lock Bits by SPM

To set the Boot Loader Lock Bits, write the desired data to RO, write “X0001001” to SPMCR and execute
SPM within four clock cycles after writing SPMCR. The only accessible Lock Bits are the Boot Lock Bits
that may prevent the Application and Boot Loader section from any software update by the MCU.

Bit 7 6 5 4 3 2 1 0
Rd | 1 | 1 | BLB12 | BLB11 | BLBO2 | BLBOT | 1 | 1 |

The tables in Boot Loader Lock Bits show how the different settings of the Boot Loader bits affect the
Flash access.

If bits 5:2 in RO are cleared (zero), the corresponding Boot Lock bit will be programmed if an SPM
instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCR. The Z-pointer is
don’t care during this operation, but for future compatibility it is recommended to load the Z-pointer with
0x0001 (same as used for reading the Lock Bits). For future compatibility It is also recommended to set
bits 7, 6, 1, and 0 in RO to “1” when writing the Lock Bits. When programming the Lock Bits the entire
Flash can be read during the operation.

EEPROM Write Prevents Writing to SPMCR

Note that an EEPROM write operation will block all software programming to Flash. Reading the Fuses
and Lock Bits from software will also be prevented during the EEPROM write operation. It is
recommended that the user checks the status bit (EEWE) in the EECR Register and verifies that the bit is
cleared before writing to the SPMCR Register.

Reading the Fuse and Lock Bits from Software

It is possible to read both the Fuse and Lock Bits from software. To read the Lock Bits, load the Z-pointer
with 0x0001 and set the BLBSET and SPMEN bits in SPMCR. When an LPM instruction is executed
within three CPU cycles after the BLBSET and SPMEN bits are set in SPMCR, the value of the Lock Bits
will be loaded in the destination register. The BLBSET and SPMEN bits will auto-clear upon completion of
reading the Lock Bits or if no LPM instruction is executed within three CPU cycles or no SPM instruction
is executed within four CPU cycles. When BLBSET and SPMEN are cleared, LPM will work as described
in the Instruction set Manual.

AtmeL Atmel ATmega32A [DATASHEET] 319

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

28.8.10.

28.8.11.

Bit 7 6 5 4 3 2 1 0

Rd | - | - | BLB12 | BB | BLBO2 | BLBO1 | B2 | LB1 |

The algorithm for reading the Fuse Low bits is similar to the one described above for reading the Lock
Bits. To read the Fuse Low bits, load the Z-pointer with 0x0000 and set the BLBSET and SPMEN bits in
SPMCR. When an LPM instruction is executed within three cycles after the BLBSET and SPMEN bits are
set in the SPMCR, the value of the Fuse Low bits (FLB) will be loaded in the destination register as
shown below. Refer to table Fuse Low Byte in section Fuse Bits for a detailed description and mapping of
the fuse low bits.

Bit 7 6 5 4 3 2 1 0
Rd | FB7 | FBE | FLB5S | FLB4 | FLB3 | FLB2 | FLB1 | FLeo |

Similarly, when reading the Fuse High bits, load 0x0003 in the Z-pointer. When an LPM instruction is
executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCR, the value of the
Fuse High bits (FHB) will be loaded in the destination register as shown below. Refer to table Fuse High
Byte in section Fuse Bits for detailed description and mapping of the fuse high bits.

Bit 7 6 5 4 3 2 1 0
Rd | rFHB7 | FHB6 | FHB5 | FHB4 | FHB3 | FHB2 | FHB1 | FHBO |

Fuse and Lock bits that are programmed read as '0'. Fuse and Lock bits that are unprogrammed, will read
as'1".

Preventing Flash Corruption

During periods of low V¢, the Flash program can be corrupted because the supply voltage is too low for
the CPU and the Flash to operate properly. These issues are the same as for board level systems using
the Flash, and the same design solutions should be applied.

A Flash program corruption can be caused by two situations when the voltage is too low. First, a regular
write sequence to the Flash requires a minimum voltage to operate correctly. Secondly, the CPU itself can
execute instructions incorrectly, if the supply voltage for executing instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader Lock bits to
prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be
done by enabling the internal Brown-out Detector (BOD) if the operating voltage matches the
detection level. If not, an external low V¢ reset protection circuit can be used. If a reset occurs
while a write operation is in progress, the write operation will be completed provided that the power
supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low V. This will prevent the
CPU from attempting to decode and execute instructions, effectively protecting the SPMCR
Register and thus the Flash from unintentional writes.

Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. The following table shows the typical
programming time for Flash accesses from the CPU.

Table 28-5. SPM Programming Time!(")

Symbol Min. Programming Time | Max. Programming Time

Flash write (Page Erase, Page Write, and write Lock bits | 3.7ms 4.5ms
by SPM)

Note: 1. Minimum and maximum programming time is per individual operation.

AtmeL Atmel ATmega32A [DATASHEET] 320

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

28.8.12. Simple Assembly Code Example for a Boot Loader

;—-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;—error handling is not included
;—the routine must be placed inside the boot space
; (at least the Do spm sub routine). Only code inside NRWW section can
; be read during self-programming (page erase and page write).
;-registers used: r0, rl, templ (rl6), temp2 (rl7), looplo (r24),
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.
.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words
.org SMALLBOOTSTART
Write page:
; Page Erase
1di spmcrval, (1<<PGERS) | (1<<SPMEN)

rcall Do_spm

; re-enable the RWW section
1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)

rcall Do_spm

; transfer data from RAM to Flash page buffer

1di looplo, low (PAGESIZEB) ;init loop variable

1di loophi, high (PAGESIZEB) ;not required for PAGESIZEB<=256
Wrloop:

1d r0, Y+

1d rl, Y+

1di spmcrval, (1<<SPMEN)

rcall Do_spm

adiw ZH:ZL, 2

sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256

brne Wrloop

; execute Page Write

subi ZL, low(PAGESIZEB) ;restore pointer

sbci ZH, high (PAGESIZEB) ;not required for PAGESIZEB<=256
1di spmcrval, (1<<PGWRT) | (1<<SPMEN)

rcall Do_spm

; re-enable the RWW section

1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)

AtmeL Atmel ATmega32A [DATASHEET]

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

321

rcall Do_spm

; read back and check, optional

1di looplo, low(PAGESIZEB) ;init loop variable

1di loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

subi YL, low (PAGESIZEB) ;restore pointer

sbci YH, high (PAGESIZEB)

Rdloop:
lpm r0, Z+
1d rl, Y+

cpse r0, rl
rjmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256

brne Rdloop

; return to RWW section

; verify that RWW section is safe to read

Return:

in templ, SPMCR

sbrs templ, RWWSB ; If RWWSB is set, the RWW section is not ready yet

ret

; re—enable the RWW section

1di spmcrval, (1<<RWWSRE) | (1<<SPMEN)
rcall Do_spm

rjmp Return

Do_spm:

; check for previous SPM complete

Wait spm:

in templ, SPMCR
sbrc templ, SPMEN

rjmp Wait spm

; input: spmcrval determines SPM action

; disable interrupts if enabled, store status
in temp2, SREG

cli

; check that no EEPROM write access is present

Wait ee:

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

322

sbic EECR, EEWE

rijmp Wait ee

; SPM timed sequence

out SPMCR, spmcrval

spm

; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2

ret

28.8.13. ATmega32A Boot Loader Parameters
In the following tables, the parameters used in the description of the self programming are given.

Table 28-6. Boot Size Configuration, ATmega32A

BOOTSZ1 | BOOTSZ0 | Boot Pages | Application Boot End Boot Reset
Size Flash Section |Loader Application |Address
Flash Section (Start Boot
Section Loader
Section)
1 1 256 4

0x0000 - 0x3F00 - OxXEFF 0x3F00
words Ox3EFF Ox3FFF

1 0 512 8 0x0000 - 0x3EO00 - 0x3DFF 0x3E00
words 0x3DFF Ox3FFF

0 1 1024 16 0x0000 - 0x3CO00 - 0x3BFF 0x3C00
words Ox3BFF Ox3FFF

0 0 2048 32 0x0000 - 0x3800 - Ox37FF 0x3800
words Ox37FF Ox3FFF

Note: The different BOOTSZ Fuse configurations are shown in Figure 28-2.
Table 28-7. Read-While-Write Limit, ATmega32A

T N S

Read-While-Write section (RWW) 224 0x0000 - Ox37FF
No Read-While-Write section (NRWW) 32 0x3800 - Ox3FFF

Note: For details about these two section, see NRWW — No Read-While-Write Section and RWW —
Read-While-Write Section.

AtmeL Atmel ATmega32A [DATASHEET] 323

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Table 28-8. Explanation of Different Variables used in figure "Addressing the Flash During SPM" from earlier
in this chapter and the Mapping to the Z-pointer, ATmega32A

PCMSB 13

PAGEMSB 5

ZPCMSB Z14
ZPAGEMSB Z6

PCPAGE PC[13:6] Z14:Z7

PCWORD PCI[5:0] Z6:21

Note: 1.
Z15: always ignored.

Variable Corresponding Z- | Description
value

Most significant bit in the Program Counter. (The Program
Counter is 14 bits PC[13:0])

Most significant bit which is used to address the words
within one page (64 words in a page requires 6 bits PC
[5:0]).

Bit in Z-register that is mapped to PCMSB. Because Z0 is
not used, the ZPCMSB equals PCMSB + 1.

Bit in Z-register that is mapped to PAGEMSB. Because
Z0 is not used, the ZPAGEMSB equals PAGEMSB + 1.

Program counter page address: Page select, for page
erase and page write

Program counter word address: Word select, for filling
temporary buffer (must be zero during page write
operation)

Z0: should be zero for all SPM commands, byte select for the LPM instruction.

See Addressing the Flash During Self-Programming for details about the use of Z-pointer during Self-

Programming.

28.9. Register Description

Atmel

Atmel ATmega32A [DATASHEET] 324
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

28.9.1.

Bit

Access

Reset

SPMCR - Store Program Memory Control Register

The Store Program Memory Control and Status Register contains the control bits needed to control the
Boot Loader operations.

When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When
addressing I/0O Registers as data space using LD and ST instructions, 0x20 must be added to these offset
addresses.

Name: SPMCR

Offset: 0x37

Reset: 0x00

Property: When addressing I/O Registers as data space the offset address is 0x57

7 6 5 4 3 2 1 0
SPMIE RWWSB RWWSRE BLBSET PGWRT PGERS SPMEN
R/W R R/W R/W R/W R/W R/W

0 0 0 0 0

Bit 7 — SPMIE: SPM Interrupt Enable

When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM ready
interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SPMEN bit in the
SPMCR Register is cleared.

Bit 6 - RWWSB: Read-While-Write Section Busy

When a Self-Programming (page erase or page write) operation to the RWW section is initiated, the
RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW section cannot be
accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to one after a Self-Programming
operation is completed. Alternatively the RWWSB bit will automatically be cleared if a page load operation
is initiated.

Bit 4 - RWWSRE: Read-While-Write Section Read Enable

When programming (Page Erase or Page Write) to the RWW section, the RWW section is blocked for
reading (the RWWSB will be set by hardware). To re-enable the RWW section, the user software must
wait until the programming is completed (SPMEN will be cleared). Then, if the RWWSRE bit is written to
one at the same time as SPMEN, the next SPM instruction within four clock cycles re-enables the RWW
section. The RWW section cannot be re-enabled while the Flash is busy with a Page Erase or a Page
Write (SPMEN is set). If the RWWSRE bit is written while the Flash is being loaded, the Flash load
operation will abort and the data loaded will be lost.

Bit 3 - BLBSET: Boot Lock Bit Set

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles
sets Boot Lock bits, according to the data in RO. The data in R1 and the address in the Z-pointer are
ignored. The BLBSET bit will automatically be cleared upon completion of the Lock bit set, or if no SPM
instruction is executed within four clock cycles.

An LPM instruction within three cycles after BLBSET and SPMEN are set in the SPMCR Register
(SPMCR.BLBSET and SPMCR.SPMEN), will read either the Lock bits or the Fuse bits (depending on Z0
in the Z-pointer) into the destination register.

AtmeL Atmel ATmega32A [DATASHEET] 325

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Bit 2 — PGWRT: Page Write

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles
executes Page Write, with the data stored in the temporary buffer. The page address is taken from the
high part of the Zpointer. The data in R1 and RO are ignored. The PGWRT bit will auto-clear upon
completion of a Page Write, or if no SPM instruction is executed within four clock cycles. The CPU is
halted during the entire Page Write operation if the NRWW section is addressed.

Bit 1 — PGERS: Page Erase

If this bit is written to one at the same time as SPMEN, the next SPM instruction within four clock cycles
executes Page Erase. The page address is taken from the high part of the Z-pointer. The data in R1 and
RO are ignored. The PGERS bit will auto-clear upon completion of a Page Erase, or if no SPM instruction
is executed within four clock cycles. The CPU is halted during the entire Page Write operation if the
NRWW section is addressed.

Bit 0 — SPMEN: Store Program Memory

This bit enables the SPM instruction for the next four clock cycles. If written to one together with either
RWWSRE, BLBSET, PGWRT or PGERS, the following SPM instruction will have a special meaning, see
description above. If only SPMEN is written, the following SPM instruction will store the value in R1:R0 in
the temporary page buffer addressed by the Z-pointer. The LSB of the Z-pointer is ignored. The SPMEN
bit will auto-clear upon completion of an SPM instruction, or if no SPM instruction is executed within four
clock cycles. During Page Erase and Page Write, the SPMEN bit remains high until the operation is
completed.

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower five bits will
have no effect.

AtmeL Atmel ATmega32A [DATASHEET] 326

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

29. Memory Programming

29.1. Program and Data Memory Lock Bits

The ATmega32A provides six Lock bits. These can be left unprogrammed ('1') or can be programmed ('0')
to obtain the additional features listed in table Lock Bit Protection Modes below. The Lock Bits can only
be erased to “1” with the Chip Erase command.

Table 29-1. Lock Bit Byte

BLB12
BLB11
BLB02
BLBO1
LB2
LB1

N WA~ 00 OO N

1 (unprogrammed)
- 1 (unprogrammed)
Boot Lock bit 1 (unprogrammed)
Boot Lock bit 1 (unprogrammed)
Boot Lock bit 1 (unprogrammed)
Boot Lock bit 1 (unprogrammed)
Lock bit 1 (unprogrammed)
Lock bit 1 (unprogrammed)

Note: 1. “1” means unprogrammed, “0” means programmed.

Table 29-2. Lock Bit Protection Modes(?)

Memory Lock Bits

LB Mode
1

2

Atmel

1
1

o -

BLB02 BLBO1

1 1
1 0
0 0

Protection Type

No memory lock features enabled.

Further programming of the Flash and EEPROM is disabled in Parallel
and Serial Programming mode. The Fuse bits are locked in both Serial
and Parallel Programming mode. ")

Further programming and verification of the Flash and EEPROM is
disabled in parallel and SPI/JTAG Serial Programming mode. The Fuse
Bits are locked in both Serial and Parallel Programming modes.'")

No restrictions for SPM or (E)LPM accessing the Application section.
SPM is not allowed to write to the Application section.

SPM is not allowed to write to the Application section, and LPM executing
from the Boot Loader section is not allowed to read from the Application
section. If Interrupt Vectors are placed in the Boot Loader section,
interrupts are disabled while executing from the Application section.

Atmel ATmega32A [DATASHEET] 327

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Memory Lock Bits Protection Type
LB Mode LB1
4

0 1 LPM executing from the Boot Loader section is not allowed to read from
the Application section. If Interrupt Vectors are placed in the Boot Loader
section, interrupts are disabled while executing from the Application

section.

BLB1 BLB12 BLB11

Mode

1 1 1 No restrictions for SPM or LPM accessing the Boot Loader section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0 SPM is not allowed to write to the Boot Loader section, and LPM
executing from the Application section is not allowed to read from the Boot
Loader section. If Interrupt Vectors are placed in the Application section,
interrupts are disabled while executing from the Boot Loader section.

4 0 1 LPM executing from the Application section is not allowed to read from the
Boot Loader section. If Interrupt Vectors are placed in the Application
section, interrupts are disabled while executing from the Boot Loader
section.

Note:

1. Program the Fuse Bits before programming the Lock Bits.
2. “1” means unprogrammed, “0” means programmed.

29.2. Fuse Bits

The ATmega32A has two fuse bytes. The tables of this section describe briefly the functionality of all the
fuses and how they are mapped into the fuse bytes. Note that the fuses are read as logical zero, “0”, if
they are programmed.

Table 29-3. Fuse High Byte

OCDEN" Enable OCD 1 (unprogrammed, OCD
disabled)

JTAGEN® 6 Enable JTAG 0 (programmed, JTAG enabled)

SPIEN(") 5 Enable Serial Program and Data 0 (programmed, SPI prog.
Downloading enabled)

CKOPT®) 4 Oscillator options 1 (unprogrammed)

EESAVE 3 EEPROM memory is preserved through the | 1 (unprogrammed, EEPROM
Chip Erase not preserved)

BOOTSZ1 2 Select Boot Size (see table Boot Size 0 (programmed)®/

Configuration in section ATmega32A Boot
Loader Parameters for details)

AtmeL Atmel ATmega32A [DATASHEET] 328

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

BOOTSZ0 1 Select Boot Size (see table Boot Size 0 (programmed)®)
Configuration in section ATmega32A Boot
Loader Parameters for details)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Note:
1. The SPIEN Fuse is not accessible in SPI Serial Programming mode.

2. The CKOPT Fuse functionality depends on the setting of the CKSEL bits, see Clock Sources for
details.

3. The default value of BOOTSZ1:0 results in maximum Boot Size. See table Boot Size Configuration
in section ATmega32A Boot Loader Parameters.

4. Never ship a product with the OCDEN Fuse programmed regardless of the setting of lock bits and
the JTAGEN Fuse. A programmed OCDEN Fuse enables some parts of the clock system to be
running in all sleep modes. This may increase the power consumption.

5. Ifthe JTAG interface is left unconnected, the JTAGEN fuse should if possible be disabled. This to
avoid static current at the TDO pin in the JTAG interface.

Table 29-4. Fuse Low Byte

BODLEVEL 7 Brown out detector trigger level 1 (unprogrammed)

BODEN 6 Brown out detector enable 1 (unprogrammed, BOD disabled)
SUT1 5 Select start-up time 1 (unprogrammed))

SUTO 4 Select start-up time 0 (programmed)'")

CKSEL3 3 Select Clock source 0 (programmed)?)

CKSEL2 2 Select Clock source 0 (programmed)?)

CKSEL1 1 Select Clock source 0 (programmed)?)

CKSELO 0 Select Clock source 1 (unprogrammed)”)
Note:

1. The default value of SUT1:0 results in maximum start-up time. See table Start-up Times for the
Internal Calibrated RC Oscillator Clock Selection in section Calibrated Internal RC Oscillator for
details.

2. The default setting of CKSEL3:0 results in Internal RC Oscillator @ 1MHz. See table Device
Clocking Options Select in section Clock Sources for details.

The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if Lock bit1
(LB1) is programmed. Program the Fuse bits before programming the Lock bits.

Related Links

ATmega32A Boot Loader Parameters on page 323

Clock Sources on page 40

Calibrated Internal RC Oscillator on page 43

AtmeL Atmel ATmega32A [DATASHEET] 329

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

29.2.1.

Latching of Fuses

The fuse values are latched when the device enters programming mode and changes of the fuse values
will have no effect until the part leaves Programming mode. This does not apply to the EESAVE Fuse
which will take effect once it is programmed. The fuses are also latched on Power-up in Normal mode.

29.3. Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This code can be
read in both serial and parallel mode, also when the device is locked. The three bytes reside in a
separate address space.
For the ATmega32A the signature bytes are given in the following table.
Table 29-5. Device and JTAG ID
Part Signature Bytes Address JTAG
0x000 0x001 0x002 Part Number Manufacture ID
ATmega32A Ox1E 0x95 0x02 9502 Ox1F
29.4. Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This code can be
read in both serial and parallel mode, also when the device is locked. The three bytes reside in a
separate address space.
For the ATmega32A the signature bytes are given in the following table.
Table 29-6. Device and JTAG ID
Part Signature Bytes Address JTAG
0x000 0x001 0x002 Part Number Manufacture ID
ATmega32A Ox1E 0x96 0x02 9602 Ox1F
29.5. Calibration Byte
The ATmega32A stores four different calibration values for the internal RC Oscillator. These bytes resides
in the signature row High byte of the addresses 0x0000, 0x0001, 0x0002, and 0x0003 for 1, 2, 4, and
8MHz respectively. During Reset, the 1TMHz value is automatically loaded into the OSCCAL Register. If
other frequencies are used, the calibration value has to be loaded manually, see OSCCAL — Oscillator
Calibration Register for details.
Related Links
OSCCAL on page 46
29.6. Parallel Programming Parameters, Pin Mapping, and Commands
This section describes how to parallel program and verify Flash Program memory, EEPROM Data
memory, Memory Lock bits, and Fuse bits in the device. Pulses are assumed to be at least 250ns unless
otherwise noted.
AtmeL Atmel ATmega32A [DATASHEET] 330

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

29.6.1.

Signal Names

In this section, some pins of this device are referenced by signal names describing their functionality
during parallel programming, refer to the following figure and table Pin Name Mapping in this section.
Pins not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive pulse. The bit
coding is shown in Table 29-9.

When pulsing WR or OE, the command loaded determines the action executed. The different Commands
are shown in Table 29-10.

Figure 29-1. Parallel Programming

+5V
RDY/BSY «—— PDI1
vee
OE ——» PD2 SV
WR ——>»{ PD3 AVCC J

BS1 —»| PD4
PB7-PB0 [«—>» DATA
XA0) ——»{ PD5
XAl —>» PD6

PAGEL —»| PD7

+12V ———1 RESET
BS2 ——»| PAO
—»| XTALI

GND

Table 29-7. Pin Name Mapping

Signal Name in /0
Programming Mode

RDY/BSY O | 0: Device is busy programming, 1: Device is ready for new
command

OE PD2 | Output Enable (Active low)

WR PD3 | | Write Pulse (Active low)

BS1 PD4 | Byte Select 1 (“0” selects Low byte, “1” selects High byte)

XAO0 PD5 | | XTAL Action Bit 0

XA1 PD6 | | XTAL Action Bit 1

PAGEL PD7 | | Program memory and EEPROM Data Page Load
AtmeL Atmel ATmega32A [DATASHEET] 331

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Signal Name in 110
Programming Mode

| Byte Select 2 (“0” selects Low byte, “1” selects second
High byte)

DATA PB7-0 I/O Bi-directional Data bus (Output when OE is low)

Table 29-8. Pin Values Used to Enter Programming Mode

PAGEL Prog_enable[3] 0
XA1 Prog_enable[2] 0
XAO0 Prog_enable[1] 0
BS1 Prog_enable[0] 0

Table 29-9. XA1 and XA0 Coding

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1)
0 1 Load Data (High or Low data byte for Flash determined by BS1)

1 0 Load Command

1 1 No Action, Idle

Table 29-10. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte
0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM

Table 29-11. Number of Words in a Page and number of Pages in the Flash

M PCWORD |Number of Pages |PCPAGE |PCMSB

16K words (32 Kbytes) 64 words PC[5:0] 256 PC[13:6] 13

AtmeL Atmel ATmega32A [DATASHEET] 332

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Table 29-12. Number of Words in a Page and number of Pages in the EEPROM

EEPROM Size PCWORD Number of Pages PCPAGE w

1Kbyte 4 bytes EEA[1:0] 256 EEA[9:2] 9

29.7. Parallel Programming
29.7.1. Enter Programming Mode
The following algorithm puts the device in Parallel Programming mode:

1. Apply 4.5 - 5.5V between V¢ and GND, and wait at least 100us.

2. Set RESET to “0” and toggle XTAL1 at least 6 times

3. Set the Prog_enable pins listed in Table 29-8 to “0000” and wait at least 100ns.

4. Apply 11.5-12.5V to RESET. Any activity on Prog_enable pins within 100ns after +12V has been
applied to RESET, will cause the device to fail entering Programming mode.

Note, if External Crystal or External RC configuration is selected, it may not be possible to apply qualified
XTAL1 pulses. In such cases, the following algorithm should be followed:

1. Set Prog_enable pins listed in Table 29-8 to “0000”.

2. Apply 4.5 - 5.5V between V¢ and GND simultaneously as 11.5 - 12.5V is applied to RESET.

3. Wait 100ps.

4. Re-program the fuses to ensure that External Clock is selected as clock source (CKSEL3:0 =
0b0000). If Lock bits are programmed, a Chip Erase command must be executed before changing
the fuses.

5. Exit Programming mode by power the device down or by bringing RESET pin to 0b0.

6. Entering Programming mode with the original algorithm, as described above.

29.7.2. Considerations for Efficient Programming
The loaded command and address are retained in the device during programming. For efficient
programming, the following should be considered.

* The command needs only be loaded once when writing or reading multiple memory locations.

« Skip writing the data value OxFF, that is the contents of the entire EEPROM (unless the EESAVE
Fuse is programmed) and Flash after a Chip Erase.

« Address high byte needs only be loaded before programming or reading a new 256 word window in
Flash or 256byte EEPROM. This consideration also applies to Signature bytes reading.

29.7.3. Chip Erase
The Chip Erase will erase the Flash, the SRAM and the EEPROM memories plus Lock bits. The Lock bits
are not reset until the program memory has been completely erased. The Fuse bits are not changed. A
Chip Erase must be performed before the Flash and/or EEPROM are reprogrammed.
Note: The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is programmed.
Load Command “Chip Erase”:

1. Set XA1, XAO0 to “10”. This enables command loading.

2. SetBS1to“0".

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

AtmeL Atmel ATmega32A [DATASHEET] 333

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.
6. Wait until RDY/BSY goes high before loading a new command.

29.7.4. Programming the Flash
The Flash is organized in pages, see Table 29-10. When programming the Flash, the program data is
latched into a page buffer. This allows one page of program data to be programmed simultaneously. The
following procedure describes how to program the entire Flash memory:
Step A. Load Command “Write Flash”.
1. Set XA1, XAO0 to “10”. This enables command loading.
2. SetBS1to“0".
3. Set DATA to “0001 0000”. This is the command for Write Flash.
4. Give XTAL1 a positive pulse. This loads the command.
Step B. Load Address Low Byte.
1. Set XA1, XAO to “00”. This enables address loading.
2. SetBS1 to “0”. This selects low address.
3. Set DATA = Address low byte (0x00 - OxFF).
4. Give XTAL1 a positive pulse. This loads the address low byte.
Step C. Load Data Low Byte.
1. Set XA1, XAO0 to “01”. This enables data loading.
2. Set DATA = Data low byte (0x00 - OxFF).
3. Give XTAL1 a positive pulse. This loads the data byte.
Step D. Load Data High Byte.
1. Set BS1 to “1”. This selects high data byte.
2. Set XA1, XAO to “01”. This enables data loading.
3. Set DATA = Data high byte (0x00 - OxFF).
4. Give XTAL1 a positive pulse. This loads the data byte.
Step E. Latch Data.
1. Set BS1to “1”. This selects high data byte.
2. Give PAGEL a positive pulse. This latches the data bytes. (Refer to the last figure in this section on
programming the Flash waveforms.)
Step F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.
While the lower bits in the address are mapped to words within the page, the higher bits address the
pages within the FLASH. This is illustrated in the following figure in this section. Note that if less than
eight bits are required to address words in the page (pagesize < 256), the most significant bit(s) in the
address low byte are used to address the page when performing a Page Write.
Step G. Load Address High byte.
1. Set XA1, XAO0 to “00”. This enables address loading.
2. SetBS1 to “1”. This selects high address.
3. Set DATA = Address high byte (0x00 - OxFF).
AtmeL Atmel ATmega32A [DATASHEET] 334

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

4. Give XTAL1 a positive pulse. This loads the address high byte.

Step H. Program Page.
1. SetBS1="0"

2. Give WR a negative pulse. This starts programming of the entire page of data. RDY/BSY goes low.
3. Wait until RDY/BSY goes high (Refer to the last figure on programming the Flash waveforms in this

section).

Step I. Repeat B through H until the entire Flash is programmed or until all data has been

programmed.

Step J. End Page Programming.

1. 1. Set XA1, XAO to “10”. This enables command loading.
2. Set DATA to “0000 0000”. This is the command for No Operation.
3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals are reset.

Figure 29-2. Addressing the Flash Which is Organized in Pages

PCMSB PAGEMSB
PROGRAM
COUMTER PCPAGE PCWORD
PAGE ADDRESS WORD ADDRESS
WITHIN THE FLASH WITHIN A PAGE
PROGRAM MEMORY PAGE
PAGE [D INSTRUCTION WORD
\
\
\
\
< \
\ Ly

Note: PCPAGE and PCWORD are listed in Table 29-11.

Atmel

Atmel ATmega32A [DATASHEET]

PCWORD[PAGEMSB:0]:

PAGEEND

335

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 29-3. Programming the Flash Waveforms

F
AN —

I N
A B C D E B C D E G H
DATA D(0x10 _ XADDR.LOw X" DATA LoW X_ DATAHIGHX _ xx__ X_ADDR. LOWX DATA LOW X DATAHIGH X xx X ADDR. HIGHX XX
XAl _/—\
XA0 / n___ / \
BSI /—\—/ \
o — /N /N \ /\
= __/
RDY/BSY \—/—
RESET +12V
OE
PAGEL /\ /\

Note: “XX”is don’t care. The letters refer to the programming description above.

29.7.5. Programming the EEPROM
The EEPROM is organized in pages, see Table 29-12, in the Page Size section. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be programmed
simultaneously. The programming algorithm for the EEPROM data memory is as follows (For details on
Command, Address and Data loading, refer to Programming the Flash):

1. Step A: Load Command “0001 0001”.
2. Step G: Load Address High Byte (0x00 - OxFF).
3. Step B: Load Address Low Byte (0x00 - OxFF).
4. Step C: Load Data (0x00 - OxFF).
5. Step E: Latch data (give PAGEL a positive pulse).
6. Step K:Repeat 3 through 5 until the entire buffer is filled.
7. Step L: Program EEPROM page
71. Set BS1 to “0".
7.2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY goes
low.
7.3. Wait until to RDY/BSY goes high before programming the next page. Refer to the figure
below for signal waveforms.
AtmeL Atmel ATmega32A [DATASHEET] 336

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Figure 29-4. Programming the EEPROM Waveforms

K
/_H
A G B C E B C E L
DATA :X oxit Xappr. HiGH X ApbR.LowX patA X xx X apDRLowX pata X XX
XAl _/—\
XA0 / / \
BS1 / \
wi /N /\
wE __/
RDY/BSY \—/—
RESET +12V
OF
PAGEL /\ /\

29.7.6. Reading the Flash
The algorithm for reading the Flash memory is as follows (Please refer to Programming the Flash in this
chapter for details on Command and Address loading):

o0k owd-~

Step A: Load Command “0000 0010”.

Step G: Load Address High Byte (0x00 - OxFF).

Step B: Load Address Low Byte (0x00 - OxFF).

Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.
Set BS1 to “1”. The Flash word high byte can now be read at DATA.

Set OE to “1”.

29.7.7. Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (Please refer to Programming the Flash for
details on Command and Address loading):

1.

ok wnN

Step A: Load Command “0000 0011”.

Step G: Load Address High Byte (0x00 - OxFF).

Step B: Load Address Low Byte (0x00 - OxFF).

Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.
Set OE to “1”.

29.7.8. Programming the Fuse Low Bits
The algorithm for programming the Fuse Low bits is as follows (Please refer to Programming the Flash for
details on Command and Data loading):

1
2
3.
4

Step A: Load Command “0100 0000”.

Step C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
Set BS1 and BS2 to “0”.

Give WR a negative pulse and wait for RDY/BSY to go high.

29.7.9. Programming the Fuse High Bits
The algorithm for programming the Fuse High bits is as follows (Please refer to Programming the Flash
for details on Command and Data loading):

Atmel

Atmel ATmega32A [DATASHEET] 337

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Step A: Load Command “0100 0000”.

Step C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.
Set BS1 to “1” and BS2 to “0”. This selects high data byte.

Give WR a negative pulse and wait for RDY/BSY to go high.

5. SetBS1 to “0”. This selects low data byte.

Poobd=

Figure 29-5. Programming the FUSES Waveforms

Write Fuse Low byte Write Fuse high byte
A

A C /—H A C ™~
D ATA] 0x40 X DATA X XX X 0x40 X DATA X XX

XAl / \ / \

RDY/BSY

RESET +12V

PAGEL

29.7.10. Programming the Lock Bits
The algorithm for programming the Lock bits is as follows (Please refer to Programming the Flash for
details on Command and Data loading):

1. Step A: Load Command “0010 0000”.
2. Step C: Load Data Low Byte. Bit n = “0” programs the Lock bit.
3. Give WR a negative pulse and wait for RDY/BSY to go high.

29.7.11.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and Lock Bits
The algorithm for reading the Fuse and Lock bits is as follows (Please refer to Programming the Flash for
details on Command loading):

1.
2.

Atmel

Step A: Load Command “0000 0100”.

Set OE to “0”, BS2 to “0”, and BS1 to “0”. The status of the Fuse Low bits can now be read at DATA
(“0” means programmed).

Set OE to “0”, BS2 to “1”, and BS1 to “1”. The status of the Fuse High bits can now be read at
DATA (“0” means programmed).

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

338

29.7.12.

29.7.13.

29.7.14.

4. Set OE to “0”, BS2 to “0”, and BS1 to “1”. The status of the Lock Bits can now be read at DATA (“0”
means programmed).

5. SetOEto “1”.

Figure 29-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read

Fuse low byte »| 0

DATA

Lock bits —»| 0

Fuse high byte |—3»| |

BS2

Reading the Signature Bytes
The algorithm for reading the Signature bytes is as follows (Please refer to Programming the Flash for
details on Command and Address loading):

1. Step A: Load Command “0000 1000”.

2. Step B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.

4. SetOEto“1".

Reading the Calibration Byte
The algorithm for reading the Calibration byte is as follows (Please refer to Programming the Flash for
details on Command and Address loading):

Step A: Load Command “0000 1000”.

Step B: Load Address Low byte, (0x00 - 0x03).

1.
2.
3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.
4. SetOEto“1".

Parallel Programming Characteristics
Figure 29-7. Parallel Programming Timing, Including some General Timing Requirements

IXLwL
XTALI IXHXIY N
tbvxn tXLDX
Data & Contol
(DATA, XAO0/1, BS1, BS2)
Ctgven | — | trLBX | 'BVWL twipx
PAGEL fo— _ .
_ twLwH .
WR tpLwL —
WLRL
i S—)
RDY/BSY
> twiLrH
AtmeL Atmel ATmega32A [DATASHEET] 339

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 29-8. Parallel Programming Timing, Loading Sequence with Timing Requirements(?)

LOAD ADDRESS LOAD DATA LOAD DATA LOAD DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
t
- txixn . XLPH tpLxH
D EE——
XTALI M m
BS1
PAGEL

DATA X ADDRO (Low Byte) >< DATA (Low Byte) >< DATA (High Byte) >< ADDRI (Low Byte)

XA0

XAl
Note: 1. The timing requirements shown in the first figure in this section (i.e., toyxn, txHxL, and tx px)
also apply to loading operation.

Figure 29-9. Parallel Programming Timing, Reading Sequence (within the same Page) with Timing
Requirements(’)

LOAD ADDRESS READ DATA READ DATA LOAD ADDRESS
(LOW BYTE) (LOW BYTE) (HIGH BYTE) (LOW BYTE)
A B
— —~ — —~
XrLoL

-
XTALL1

tgvpv

toLpv

tonpz
—

DATA —< ADDRO (Low Byte) DATA (Low Byte) DATA (High Byte) >}—< ADDRI (Low Byte)

XAl
Note: 1. The timing requirements shown in the first figure in this section (i.e., tpyxH, txHxw, and tx px)
also apply to reading operation.

Table 29-13. Parallel Programming Characteristics, VCC = 5V * 10%

mep e e e e

Programming Enable Voltage 11.5 12.5
lpp Programming Enable Current 250 pA
tovxH Data and Control Valid before XTAL1 High 67 ns
txLXH XTAL1 Low to XTAL1 High 200 ns
txHXL XTAL1 Pulse Width High 150 ns
txLDX Data and Control Hold after XTAL1 Low 67 ns
txowe XTAL1 Low to WR Low 0 ns
AtmeL Atmel ATmega32A [DATASHEET] 340

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

oma s e e e e

tyLpH XTAL1 Low to PAGEL high

toLxH PAGEL low to XTAL1 high 150 ns
tevpPH BS1 Valid before PAGEL High 67 ns
torpL PAGEL Pulse Width High 150 ns
tpLBX BS1 Hold after PAGEL Low 67 ns
twiex BS2/1 Hold after WR Low 67 ns
tprwL PAGEL Low to WR Low 67 ns
teywi BS1 Valid to WR Low 67 ns
twiwH WR Pulse Width Low 150 ns
twiRL WR Low to RDY/BSY Low 0 1 us
tWLRH WR Low to RDY/BSY High'") 3.7 45 ms
twLrH_CE WR Low to RDY/BSY High for Chip Erase'”) 7.5 9 ms
txLoL XTAL1 Low to OE Low 0 ns
tavDy BS1 Valid to DATA valid 0 250 ns
toLpv OE Low to DATA Valid 250 ns
toHDz OE High to DATA Tri-stated 250 ns
Note:

1. twirn is valid for the Write Flash, Write EEPROM, Write Fuse Bits and Write Lock Bits commands.
2. twLrH_ce is valid for the Chip Erase command.

29.8. Serial Downloading

Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus while RESET
is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (output). After
RESET is set low, the Programming Enable instruction needs to be executed first before program/erase
operations can be executed.

Note: The pin mapping for SPI programming is listed in the following section. Not all parts use the SPI
pins dedicated for the internal SPI interface.

29.9. Serial Programming Pin Mapping
Table 29-14. Pin Mapping Serial Programming

MOSI Serial Data in
MISO PB6 (0] Serial Data out
SCK PB7 | Serial Clock
/ItmeL Atmel ATmega32A [DATASHEET] 341

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

29.9.1.

Figure 29-10. Serial Programming and Verify(")

+2.7-5.5V

vCC —T

+2.7-55v®

MOSI —»{ PBS

MISO «<— PB6
AVCC
SCK —»| PB7

—»| XTALI

— | RESET

GND

Note:

1. If the device is clocked by the Internal Oscillator, it is no need to connect a clock source to the
XTAL1 pin.

2. Vee-0.3 <AVee < Vg + 0.3, however, AV should always be within 2.7 - 5.5V.

When programming the EEPROM, an auto-erase cycle is built into the self-timed programming operation
(in the Serial mode ONLY) and there is no need to first execute the Chip Erase instruction. The Chip
Erase operation turns the content of every memory location in both the Program and EEPROM arrays
into OxFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods for the
Serial Clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for fyx < 12MHz, 3 CPU clock cycles for fy = 12MHz
High: > 2 CPU clock cycles for fy < 12MHz, 3 CPU clock cycles for fy = 12MHz

Serial Programming Algorithm
When writing serial data to the ATmega32A, data is clocked on the rising edge of SCK.

When reading data from the ATmega32A, data is clocked on the falling edge of SCK. Please refer to the
figure, Figure 29-11 in SPI Serial Programming Characteristics section for timing details.

To program and verify the ATmega32A in the serial programming mode, the following sequence is
recommended (See Serial Programming Instruction set in Table 29-16 Serial Programming Waveforms:

1. Power-up sequence:
Apply power between V¢ and GND while RESET and SCK are set to “0”. In some systems, the
programmer can not guarantee that SCK is held low during power-up. In this case, RESET must be
given a positive pulse of at least two CPU clock cycles duration after SCK has been set to “0”.

AtmeL Atmel ATmega32A [DATASHEET] 342

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

29.9.2,

29.9.3.

2. Wait for at least 20ms and enable serial programming by sending the Programming Enable serial
instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of synchronization.
When in sync. the second byte (0x53), will echo back when issuing the third byte of the
Programming Enable instruction. Whether the echo is correct or not, all four bytes of the instruction
must be transmitted. If the 0x53 did not echo back, give RESET a positive pulse and issue a new
Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte at a time by
supplying the 6 LSB of the address and data together with the Load Program Memory Page
instruction. To ensure correct loading of the page, the data low byte must be loaded before data
high byte is applied for a given address. The Program Memory Page is stored by loading the Write
Program Memory Page instruction with the 8 MSB of the address. If polling is not used, the user
must wait at least twp rasH before issuing the next page.

5. Note: If other commands than polling (read) are applied before any write operation (FLASH,
EEPROM, Lock Bits, Fuses) is completed, it may result in incorrect programming.

6. The EEPROM array is programmed one byte at a time by supplying the address and data together
with the appropriate Write instruction. An EEPROM memory location is first automatically erased
before new data is written. If polling is not used, the user must wait at least twp geprom before
issuing the next byte. In a chip erased device, no 0xFFs in the data file(s) need to be programmed.

7. Any memory location can be verified by using the Read instruction which returns the content at the
selected address at serial output MISO.

8. At the end of the programming session, RESET can be set high to commence normal operation.

9. Power-off sequence (if needed):
Set RESET to “1”.

Turn Ve power off.

Data Polling Flash

When a page is being programmed into the Flash, reading an address location within the page being
programmed will give the value OxFF. At the time the device is ready for a new page, the programmed
value will read correctly. This is used to determine when the next page can be written. Note that the entire
page is written simultaneously and any address within the page can be used for polling. Data polling of
the Flash will not work for the value OxFF, so when programming this value, the user will have to wait for
at least twp_rLasH before programming the next page. As a chip-erased device contains OxFF in all
locations, programming of addresses that are meant to contain OxFF, can be skipped. See table in next
section for tWD_FLASH value.

Data Polling EEPROM

When a new byte has been written and is being programmed into EEPROM, reading the address location
being programmed will give the value OxFF. At the time the device is ready for a new byte, the
programmed value will read correctly. This is used to determine when the next byte can be written. This
will not work for the value OxFF, but the user should have the following in mind: As a chip-erased device
contains OxFF in all locations, programming of addresses that are meant to contain OxFF, can be skipped.
This does not apply if the EEPROM is programmed without chip-erasing the device. In this case, data
polling cannot be used for the value OxFF, and the user will have to wait at least twp geprom before
programming the next byte. See table below for tywp eeprom Value.

AtmeL Atmel ATmega32A [DATASHEET] 343

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 29-15. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location, Ve = 5V £ 10%

Symbol Minimum Wait Delay

twp_ruse 4.5ms
twp_FLASH 4.5ms
twp_EEPROM 9ms
twp_ERASE 9ms

Figure 29-11. Serial Programming Waveforms

sty /X~ XXX
sommogs /X XXX OCOCOEN
s 1 [[1 T T LT

R A A A B R R A

Table 29-16. Serial Programming Instruction Set

Programming 1010 1100 0101 0011 XXKX XXXX XXXX XXXX Enable SPI Serial Programming

Enable after RESET goes low.

Chip Erase 1010 1100 100x xxxx XKXX XKXXX XXXX XXXX Chip Erase EEPROM and Flash.

Read Program 0010 HOO0O 00aa aaaa bbbb bbbb 0000 0000 Read H (high or low) data o from

Memory Program memory at word address
ab.

Load Program 0100 HOO00 00xx xxxx xxbb bbbb iiii iidid Write H (high or low) data i to

Memory Page Program memory page at word

address b. Data Low byte must be
loaded before Data High byte is
applied within the same address.

Write Program 0100 1100 00aa aaaa bbxx xxxx XXXX XXXX Write Program memory Page at
Memory Page address a:b.

Read EEPROM 1010 0000 00xx xxaa bbbb bbbb 0000 0000 Read data o from EEPROM
Memory memory at address a:b.

Write EEPROM 1100 0000 00xx xxaa bbbb bbbb iiii iidd Write data i to EEPROM memory at
Memory address a:b.

Read Lock Bits 0101 1000 0000 0000 XXXX XXXX XX00 0000 Read Lock Bits. “0” = programmed,

“1” = unprogrammed. See Table
29-1 for details.

Write Lock Bits 1010 1100 111x xxxXx XXXX XXXX 11ii iidd Write Lock Bits. Set bits = “0” to
program Lock Bits. See Table Table
29-1 for details.

Read Signature 0011 0000 00XX XXXX XXXX xXxXbb 0000 0000 Read Signature Byte o at address
Byte b.
AtmeL Atmel ATmega32A [DATASHEET] 344

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Write Fuse Bits 1010 1100 1010 0000 XKXX XKXXX iiii iidd Set bits = “0” to program, “1” to
unprogram. See Table 29-4 for
details.

Write Fuse High 1010 1100 1010 1000 XXXX XXXX iiid iidid Set bits = “0” to program, “1” to

Bits unprogram. See Table 29-3 for
details.

Read Fuse Bits 0101 0000 0000 0000 XXXX XXXX 0000 0000 Read Fuse Bits. “0” = programmed,

“1” = unprogrammed. See table
Table 29-4 for details.

Read Fuse High 0101 1000 0000 1000 XKXX XKXXX 0000 0000 Read Fuse high bits. “0” =
Bits programmed, “1” = unprogrammed.
See table Table 29-3 for details.

Read Calibration 0011 1000 XXXX XXXX 0000 00bb 0000 0000 Read Calibration Byte o at address
Byte b.

Note:
a = address high bits

b = address low bits

H =0 — Low byte, 1 — High byte
o = data out

i =datain

X = don’t care

29.9.4. SPI Serial Programming Characteristics
For characteristics of the SPI module, see SPI Timing Characteristics.

Related Links
SPI Timing Characteristics on page 365

29.10. Programming Via the JTAG Interface

Programming through the JTAG interface requires control of the four JTAG specific pins: TCK, TMS, TDI,
and TDO. Control of the Reset and clock pins is not required.

To be able to use the JTAG interface, the JTAGEN fuse must be programmed. The device is default
shipped with the Fuse programmed. In addition, the JTD bit in MCUCSR must be cleared. Alternatively, if
the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be cleared after two chip
clocks, and the JTAG pins are available for programming. This provides a means of using the JTAG pins
as normal port pins in running mode while still allowing In-System Programming via the JTAG interface.
Note that this technique can not be used when using the JTAG pins for Boundary-scan or On-chip Debug.
In these cases the JTAG pins must be dedicated for this purpose.

As a definition in this data sheet, the LSB is shifted in and out first of all Shift Registers.

29.10.1. Programming Specific JTAG Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions useful for
Programming are listed below.

AtmeL Atmel ATmega32A [DATASHEET] 345

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

The OPCODE for each instruction is shown behind the instruction name in hex format. The text describes
which data register is selected as path between TDI and TDO for each instruction.

The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be used as an
idle state between JTAG sequences. The state machine sequence for changing the instruction word is
shown in the figure below.

Figure 29-12. State Machine Sequence for Changing the Instruction Word

18 Test-LOZIC-RESEt Mnmrmrrrsmmmmmmrss s e ms st
\’L...........E H
Lo
h 4 :
0 C Run-Test/Idle I ~ P Sclect-DR Scan I P Select-IR Scan R
A :
g L0 io
E gossssssss=- ! """"""I
: 1 Capture-DR I Capture-IR
0 lO
[) AT
: -,
-------- 4 Shift-DR () > Shift-IR 0
1 il
—) A
i Exitl-DR b L » Exitl-R !
Lo i io
. S z
: <
: Pause-DR b0 Pause-IR 0
B i il
. S z
haneenes Q—-i Exit2-DR | i 0 Exit2-IR
1 i il
. S z
' Update-DR 4 Update-IR —
"""" o 1 0

29.10.2. AVR_RESET (0xC)

The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking the
device out from the Reset mode. The TAP controller is not reset by this instruction. The one bit Reset

AtmeL Atmel ATmega32A [DATASHEET] 346

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

29.10.3.

29.10.4.

29.10.5.

29.10.6.

Register is selected as Data Register. Note that the reset will be active as long as there is a logic 'one' in
the Reset Chain. The output from this chain is not latched.

The active states are:

+ Shift-DR: The Reset Register is shifted by the TCK input.

PROG_ENABLE (0x4)

The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16-bit
Programming Enable Register is selected as data register. The active states are the following:

+ Shift-DR: the programming enable signature is shifted into the data register.

* Update-DR: the programming enable signature is compared to the correct value, and Programming
mode is entered if the signature is valid.

PROG_COMMANDS (0x5)

The AVR specific public JTAG instruction for entering programming commands via the JTAG port. The 15-
bit Programming Command Register is selected as data register. The active states are the following:

* Capture-DR: the result of the previous command is loaded into the data register.

- Shift-DR: the data register is shifted by the TCK input, shifting out the result of the previous
command and shifting in the new command.

* Update-DR: the programming command is applied to the Flash inputs.

* Run-Test/Idle: one clock cycle is generated, executing the applied command.

PROG_PAGELOAD (0x6)

The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port. The
1024-bit Virtual Flash Page Load Register is selected as data register. This is a virtual scan chain with
length equal to the number of bits in one Flash page. Internally the Shift Register is 8-bit. Unlike most
JTAG instructions, the Update-DR state is not used to transfer data from the Shift Register. The data are
automatically transferred to the Flash page buffer byte by byte in the Shift-DR state by an internal state
machine. This is the only active state:

« Shift-DR: Flash page data are shifted in from TDI by the TCK input, and automatically loaded into
the Flash page one byte at a time.

Note: 1. The JTAG instruction PROG_PAGELOAD can only be used if the AVR device is the first device
in JTAG scan chain. If the AVR cannot be the first device in the scan chain, the byte-wise programming
algorithm must be used.

PROG_PAGEREAD (0x7)

The AVR specific public JTAG instruction to read one full Flash data page via the JTAG port. The 1032-bit
Virtual Flash Page Read Register is selected as data register. This is a virtual scan chain with length
equal to the number of bits in one Flash page plus 8. Internally the Shift Register is 8-bit. Unlike most
JTAG instructions, the Capture-DR state is not used to transfer data to the Shift Register. The data are
automatically transferred from the Flash page buffer byte by byte in the Shift-DR state by an internal state
machine. This is the only active state:

« Shift-DR: Flash data are automatically read one byte at a time and shifted out on TDO by the TCK
input. The TDI input is ignored.

Note: 1. The JTAG instruction PROG_PAGEREAD can only be used if the AVR device is the first device
in JTAG scan chain. If the AVR cannot be the first device in the scan chain, the byte-wise programming
algorithm must be used.

AtmeL Atmel ATmega32A [DATASHEET] 347

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

29.10.7.

29.10.8.

29.10.9.

Data Registers

The data registers are selected by the JTAG instruction registers described in section Programming
Specific JTAG Instructions. The data registers relevant for programming operations are:

* Reset Register

* Programming Enable Register

* Programming Command Register
* Virtual Flash Page Load Register
* Virtual Flash Page Read Register

Reset Register

The Reset Register is a Test Data Register used to reset the part during programming. It is required to
reset the part before entering programming mode.

A high value in the Reset Register corresponds to pulling the external Reset low. The part is reset as long
as there is a high value present in the Reset Register. Depending on the Fuse settings for the clock
options, the part will remain reset for a Reset Time-Out Period (refer to Clock Sources) after releasing the
Reset Register. The output from this Data Register is not latched, so the reset will take place immediately,
as shown in figure Reset Register.

Related Links

Clock Sources on page 40
Reset Register on page 289

Programming Enable Register

The Programming Enable Register is a 16-bit register. The contents of this register is compared to the
programming enable signature, binary code 1010_0011_0111_0000. When the contents of the register is
equal to the programming enable signature, programming via the JTAG port is enabled. The Register is
reset to 0 on Power-on Reset, and should always be reset when leaving Programming mode.

Figure 29-13. Programming Enable Register

TDI

|

$A370

—» Programming enable

> = » O
|
A 4
o
o

.

ClockDR & PROG_ENABLE

29.10.10. Programming Command Register

The Programming Command Register is a 15-bit register. This register is used to serially shift in
programming commands, and to serially shift out the result of the previous command, if any. The JTAG

AtmeL Atmel ATmega32A [DATASHEET] 348

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Programming Instruction Set is shown in the following table. The state machine sequence when shifting in
the programming commands is illustrated in the last figure in this section.

Figure 29-14. Programming Command Register
TDI

|

S
T
R
(0] >
B
E
S
Flash
EEPROM
A Fuses
. Lock Bits
R
E
s N
. »
/
D
A
T
A

TDO
Table 29-17. JTAG Programming Instruction Set

a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x =
don’t care

1a. Chip erase

1b. Poll for chip erase complete

2a. Enter Flash Write

2b. Load Address High Byte
2c. Load Address Low Byte
2d. Load Data Low Byte
2e. Load Data High Byte

2f. Latch Data

Atmel

0100011_10000000
0110001_10000000

0110011_10000000
0110011_10000000

0110011_10000000
0100011_00010000
0000111_aaaaaaaa

0000011_bbbbbbbb

0110111_00000000
1110111_00000000

0110111_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_ XXXXXXXX

XXXXXXX_XXXXXXXX

XXXXXOX_ XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX

()

©)

(1)

Atmel ATmega32A [DATASHEET] 349
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

2g.

4a.
4b.
4c.
4d.
4e.

Write Flash Page

. Poll for Page Write complete

. Enter Flash Read

. Load Address High Byte

. Load Address Low Byte

. Read Data Low and High Byte

Enter EEPROM Write
Load Address High Byte
Load Address Low Byte
Load Data Byte

Latch Data

4f. Write EEPROM Page

4q.
5a.
. Load Address High Byte
5c.
5d.

Atmel

Poll for Page Write complete

Enter EEPROM Read

Load Address Low Byte
Read Data Byte

. Enter Fuse Write

. Load Data Low Byte'®)

0110111_00000000
0110101_00000000

0110111_00000000
0110111_00000000

0110111_00000000
0100011_00000010
0000111_aaaaaaaa
0000011_bbbbbbbb

0110010_00000000
0110110_00000000

0110111_00000000

0100011_00010001
0000111_aaaaaaaa
0000011_bbbbbbbb
0010011 _iiiiiii

0110111_00000000
1110111_00000000
0110111_00000000

0110011_00000000
0110001_00000000

0110011_00000000
0110011_00000000

0110011_00000000
0100011_00000011
0000111_aaaaaaaa
0000011_bbbbbbbb

0110011_bbbbbbbb
0110010_00000000

0110011_00000000

0100011_01000000
0010011 _iiiiiii

XXXXXXX _XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX

XXXXXXX _XXXXXXXX

XXXXXOX_ XXXXXXXX
XXXXXXX _XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

XXXXXXX_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_ XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX
XXXXXXX_ XXXXXXXX

XXXXXXX_XXXXXXXX

XXXXXXX_ XXXXXXXX

XXXXXOX_ XXXXXXXX
XXXXXXX_ XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_00000000

XXXXXXX_ XXXXXXXX

XXXXXXX_XXXXXXXX

()

©)

low byte

high byte

©)

(1)

(1)

()

©)

@)

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

6¢. Write Fuse High byte

6d. Poll for Fuse Write complete
6e. Load Data Low Byte!”)
6f. Write Fuse Low byte

6g. Poll for Fuse Write complete
7a. Enter Lock bit Write

7b. Load Data Byte'”)

7c. Write Lock bits

7d. Poll for Lock bit Write complete
8a. Enter Fuse/Lock bit Read
8b. Read Fuse High Byte!”)

8c. Read Fuse Low Byte®)

8d. Read Lock bits'®)

8e. Read Fuses and Lock bits

9a. Enter Signature Byte Read
9b. Load Address Byte
9c. Read Signature Byte

0110111_00000000
0110101_00000000

0110111_00000000
0110111_00000000

0110111_00000000
0010011 _iiiiiii

0110011_00000000
0110001_00000000
0110011_00000000
0110011_00000000

0110011_00000000
0100011_00100000

0110011_00000000
0110001_00000000

0110011_00000000
0110011_00000000

0110011_00000000
0100011_00000100

0111110_00000000
0111111_00000000

0110010_00000000
0110011_00000000

0110110_00000000
0110111_00000000

0111010_00000000
0111110_00000000

0110010_00000000
0110110_00000000
0110111_00000000

0100011_00001000
0000011_bbbbbbbb

0110010_00000000
0110011_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX

XXXXXOX_ XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX

XXXXXOX_ XXXXXXXX
XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX

XXXXXOX_ XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX
XXXXXXX_ 00000000

XXXXXXX _XXXXXXXX
XXXXXXX_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXO00000

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

XXXXXXX_00000000
XXXXXXX_00000000

XXXXXXX_00000000

XXXXXXX_XXXXXXXX
XXXXXXX_XXXXXXXX

XXXXXXX_XXXXXXXX
XXXXXXX_00000000

()
©)
(1)

()

(4)
(1)

()

()

()

fuse ext. byte

fuse high byte

fuse low byte

lock bits

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

351

10a. Enter Calibration Byte Read 0100011_00001000 | XXXXXXX_XXXXXXXX
10b. Load Address Byte 0000011_bbbbbbbb | XXXXXXX_ XXXXXXXX
10c. Read Calibration Byte 0110110_00000000 XXXXXXX_ XXXXXXXX

0110111_00000000 XXXXXXX_ 00000000

Note:

1. This command sequence is not required if the seven MSB are correctly set by the previous
command sequence (which is normally the case).

2. Repeat until o = “1”.

3. Set bits to “0” to program the corresponding fuse, “1” to unprogram the Fuse.

4. Set bits to “0” to program the corresponding lock bit, “1” to leave the Lock bit unchanged.

5. “0” = programmed, “1” = unprogrammed.

6. The bit mapping for Fuses High byte is listed in Table 29-3

7. The bit mapping for Fuses Low byte is listed in Table 29-4

8. The bit mapping for Lock bits byte is listed in Table 29-1

9. Address bits exceeding PCMSB and EEAMSB (Table 29-10 and Table 29-11) are don’t care
AtmeL Atmel ATmega32A [DATASHEET] 352

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 29-15. State Machine Sequence for Changing/Reading the Data Word

1 P Te s t-Lo@IC-ReS et Ml-rrrmmrrrmrrr e
Lo
v cemmeemmmmeemmoeeenoeeeees
OC Run-Test/Idle l—v—} Select-DR Scan L Pi Select-IR Scan fr-seeeet
2 f e S
0 i 0
v R b S
L Capture-DR | ;- 1 Capture-IR
0 5 Lo
v b ians b A
, P , <,
> Shift-DR i » Shift-IR b0
1 ' L1
v D b A
L | Exitl-DR ' Ll Exitl-R ke,
io Lo §
............ . A :
I
Pause-DR 0 Pause-IR A
1 i
Yy | b A
0 Exit2-DR | | e 00 Exie-R
I L
Yy | h A
Update-DR |[¢—— Update-IR ~ id------
Tl 0 B

29.10.11. Virtual Flash Page Load Register
The Virtual Flash Page Load Register is a virtual scan chain with length equal to the number of bits in one
Flash page. Internally the Shift Register is 8-bit, and the data are automatically transferred to the Flash
page buffer byte by byte. Shift in all instruction words in the page, starting with the LSB of the first
instruction in the page and ending with the MSB of the last instruction in the page. This provides an
efficient way to load the entire Flash page buffer before executing Page Write.

Atmel

Atmel ATmega32A [DATASHEET]

353

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 29-16. Virtual Flash Page Load Register

TDI

State
machine

STROBES

v

ADDRESS

v

> = » O

TDO

29.10.12. Virtual Flash Page Read Register

v

Flash
EEPROM
Fuses
Lock Bits

The Virtual Flash Page Read Register is a virtual scan chain with length equal to the number of bits in
one Flash page plus 8. Internally the Shift Register is 8-bit, and the data are automatically transferred
from the Flash data page byte by byte. The first eight cycles are used to transfer the first byte to the
internal Shift Register, and the bits that are shifted out during these 8 cycles should be ignored. Following
this initialization, data are shifted out starting with the LSB of the first instruction in the page and ending
with the MSB of the last instruction in the page. This provides an efficient way to read one full Flash page

to verify programming.

Atmel

Atmel ATmega32A [DATASHEET] 354
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 29-17. Virtual Flash Page Read Register

STROBES

v

State

machine
TDI
ADDRESS |

—
A

Flash
EEPROM
Fuses
Lock Bits

> = » O

TDO

29.10.13. Programming Algorithm
All references below of type “1a”, “1b”, and so on, refer to Table 29-17.

29.10.14. Entering Programming Mode
1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register.

2. Enterinstruction PROG_ENABLE and shift 1010_0011_0111_0000 in the Programming Enable
Register.

29.10.15. Leaving Programming Mode
1. Enter JTAG instruction PROG_COMMANDS.
2. Disable all programming instructions by using no operation instruction 11a.

3. Enterinstruction PROG_ENABLE and shift 0000_0000_0000_0000 in the programming Enable
Register.

4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register.

29.10.16. Performing Chip Erase
1. Enter JTAG instruction PROG_COMMANDS.
2. Start chip erase using programming instruction 1a.

3. Poll for chip erase complete using programming instruction 1b, or wait for tw rH_cg (refer to table
Command Byte Bit Coding in section Parallel Programming Parameters, Pin Mapping, and
Commands).

Related Links
Parallel Programming Characteristics on page 339

29.10.17. Programming the Flash
Before programming the Flash a Chip Erase must be performed. See Performing Chip Erase.

AtmeL Atmel ATmega32A [DATASHEET] 355

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

1.
2.
3.
4.
5.
6.
7.
8.

9.

Enter JTAG instruction PROG_COMMANDS.

Enable Flash write using programming instruction 2a.
Load address high byte using programming instruction 2b.
Load address low byte using programming instruction 2c.
Load data using programming instructions 2d, 2e and 2f.
Repeat steps 4 and 5 for all instruction words in the page.
Write the page using programming instruction 2g.

Poll for Flash write complete using programming instruction 2h, or wait for ty, ry (refer to table
Parallel Programming Characteristics, VCC = 5V +10% in chapter Parallel Programming
Characteristics).

Repeat steps 3 to 7 until all data have been programmed.

A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction:

9.

Enter JTAG instruction PROG_COMMANDS.
Enable Flash write using programming instruction 2a.

Load the page address using programming instructions 2b and 2c. PCWORD (refer to Table 29-10)
is used to address within one page and must be written as 0.

Enter JTAG instruction PROG_PAGELOAD.

Load the entire page by shifting in all instruction words in the page, starting with the LSB of the first
instruction in the page and ending with the MSB of the last instruction in the page.

Enter JTAG instruction PROG_COMMANDS.
Write the page using programming instruction 2g.

Poll for Flash write complete using programming instruction 2h, or wait for ty, rH (refer to table
Parallel Programming Characteristics, VCC = 5V +10% in chapter Parallel Programming
Characteristics).

Repeat steps 3 to 8 until all data have been programmed.

Related Links
Parallel Programming Characteristics on page 339

29.10.18. Reading the Flash

1.

ok wbd

Enter JTAG instruction PROG_COMMANDS.

Enable Flash read using programming instruction 3a.
Load address using programming instructions 3b and 3c.
Read data using programming instruction 3d.

Repeat steps 3 and 4 until all data have been read.

A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction:

Atmel

Enter JTAG instruction PROG_COMMANDS.
Enable Flash read using programming instruction 3a.
Load the page address using programming instructions 3b and 3c. PCWORD (refer to table

Command Byte Bit Coding in section Parallel Programming Parameters, Pin Mapping, and
Commands) is used to address within one page and must be written as 0.

Enter JTAG instruction PROG_PAGEREAD.
Read the entire page by shifting out all instruction words in the page, starting with the LSB of the

first instruction in the page and ending with the MSB of the last instruction in the page. Remember
that the first 8 bits shifted out should be ignored.

Atmel ATmega32A [DATASHEET] 356

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

6.
7.

Related Links
Parallel Programming Characteristics on page 339

Enter JTAG instruction PROG_COMMANDS.
Repeat steps 3 to 6 until all data have been read.

29.10.19. Programming the EEPROM
Before programming the EEPROM a Chip Erase must be performed. See Performing Chip Erase.

©No Ok wODN-=

9.

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM write using programming instruction 4a.
Load address high byte using programming instruction 4b.
Load address low byte using programming instruction 4c.
Load data using programming instructions 4d and 4e.
Repeat steps 4 and 5 for all data bytes in the page.

Write the data using programming instruction 4f.

Poll for EEPROM write complete using programming instruction 4g, or wait for tyy g (refer to table
Parallel Programming Characteristics, VCC = 5V +10% in chapter Parallel Programming
Characteristics).

Repeat steps 3 to 8 until all data have been programmed.

Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM

Related Links
Parallel Programming Characteristics on page 339

29.10.20. Reading the EEPROM

Enter JTAG instruction PROG_COMMANDS.

Enable EEPROM read using programming instruction 5a.
Load address using programming instructions 5b and 5c.
Read data using programming instruction 5d.

Repeat steps 3 and 4 until all data have been read.

Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM

29.10.21. Programming the Fuses

1.
2.
3.

Atmel

Enter JTAG instruction PROG_COMMANDS.

Enable Fuse write using programming instruction 6a.

Load data high byte using programming instructions 6b. A bit value of “0” will program the
corresponding fuse, a “1” will unprogram the fuse.

Write high Fuse byte using programming instruction 6c.

Poll for Fuse write complete using programming instruction 6d, or wait for ty ry (refer to table

Parallel Programming Characteristics, VCC = 5V +10% in chapter Parallel Programming
Characteristics).

Load data low byte using programming instructions 6e. A bit value of “0” will program the
corresponding fuse, a “1” will unprogram the fuse.

Write Fuse low byte using programming instruction 6f.

Poll for Fuse write complete using programming instruction 6g, or wait for ty ry (refer to table

Parallel Programming Characteristics, VCC = 5V +10% in chapter Parallel Programming
Characteristics).

Atmel ATmega32A [DATASHEET] 357

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Related Links
Parallel Programming Characteristics on page 339

29.10.22. Programming the Lock Bits
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Lock bit write using programming instruction 7a.

3. Load data using programming instructions 7b. A bit value of “0” will program the corresponding lock
bit, a “1” will leave the lock bit unchanged.

4. Write Lock bits using programming instruction 7c.

5. Poll for Lock bit write complete using programming instruction 7d, or wait for ty rH (refer to table
Parallel Programming Characteristics, VCC = 5V £10% in chapter Parallel Programming
Characteristics).

Related Links
Parallel Programming Characteristics on page 339

29.10.23. Reading the Fuses and Lock Bits
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Fuse/Lock bit read using programming instruction 8a.
3. — Toread all Fuses and Lock bits, use programming instruction 8e.
— To only read Fuse high byte, use programming instruction 8b.
— Toonly read Fuse low byte, use programming instruction 8c.
— To only read Lock bits, use programming instruction 8d.

29.10.24. Reading the Signature Bytes
1. Enter JTAG instruction PROG_COMMANDS.
Enable Signature byte read using programming instruction 9a.
Load address 0x00 using programming instruction 9b.
Read first signature byte using programming instruction 9c.

Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third signature
bytes, respectively.

ok wDnN

29.10.25. Reading the Calibration Byte
1. Enter JTAG instruction PROG_COMMANDS.
2. Enable Calibration byte read using programming instruction 10a.
3. Load address 0x00 using programming instruction 10b.
4. Read the calibration byte using programming instruction 10c.

AtmeL Atmel ATmega32A [DATASHEET] 358

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

30.

30.1.

Electrical Characteristics

Operating
Temperature

Storage Temperature

Voltage on any Pin
except RESET
with respect to
Ground

Voltage on RESET
with respect to
Ground

Maximum Operating
Voltage

DC Current per 1/10
Pin

DC Current V¢ and
GND Pins

DC Characteristics
Table 30-2. Tp =-40°C to 85°C, V¢ = 2.7V to 5.5V (unless otherwise noted)

i i o i s

Vi Input Low Voltage except XTAL1

Table 30-1. Absolute Maximum Ratings*

-55°C to
+125°C

-65°C to
+150°C

-0.5V to VCC
+0.5V

-0.5V to +13.0V

6.0V

40.0mA

200.0mA and
400.0mA
TQFP/MLF

and RESET pins

Vi Input High Voltage except XTAL1

and RESET pins

Vi1 Input Low Voltage
XTAL1 pin

ViH1 Input High Voltage
XTAL 1 pin

VL2 Input Low Voltage
RESET pin

V12 Input High Voltage

RESET pin

*NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of
the device at these or other conditions beyond those indicated
in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended
periods may affect device reliability.

Ve = 2.7V - 5.5V
Ve = 4.5V - 5.5V

Voo = 2.7V - 5.5V
VCC =45V -55V

Vee = 2.7V - 5.5V

VCC =2.7V-55V
Voo = 4.5V - 5.5V

Voo = 2.7V - 5.5V

Voo = 2.7V - 5.5V

0.6
2

-0.5

0.7

VCC(Z)

0.2 Vg™

Vec+ 0.5 V

0.1 Vee!" v

Vec+ 0.5 V

02Vee |V

Vec+ 0.5 V

Atmel ATmega32A [DATASHEET] 359

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

e s o i s

Vacio

IacLk

taceD

Note:
1.
2.

Output Low Voltage®)
(Ports A,B,C,D)

Output High Voltage/
(Ports A,B,C,D)

Input Leakage
Current I/O Pin

Input Leakage
Current I/O Pin

Reset Pull-up Resistor
I/O Pin Pull-up Resistor
Power Supply Current

Power-down mode(®)

Analog Comparator
Input Offset Voltage

Analog Comparator
Input Leakage Current

Analog Comparator
Propagation Delay

IOL = 20mA, VCC 5V
loL = 10mA, Vee =3V

lon = -20mA, Ve = 5V
IOH = -10mA, VCC =3V
Ve = 5.5V, pin low
(absolute value)

Vce = 5.5V, pin high
(absolute value)

Active 1MHz, V¢ = 3V
Active 4MHz, V¢ = 3V
Active 8MHz, V¢ = 5V
Idle 1MHz, V¢ = 3V
Idle 4MHz, V¢ = 3V
Idle 8MHz, V¢ = 5V
WDT enabled, V¢ = 3V

WDT disabled, Ve = 3V

Ve = 5V
Vin = Veof2
Ve = 5V

W = Vel
Vee = 2.7V
Vee = 4.0V

4.2
22

30
20

-50

0.6
2.1
7.5
0.2
0.6
2.8
<10

<1

750
500

“Max” means the highest value where the pin is guaranteed to be read as low
“Min” means the lowest value where the pin is guaranteed to be read as high

0.5

85
50

20

40

50

\

3. Although each I/O port can sink more than the test conditions (20mA at V¢ = 5V, 10mA at Ve =

3V) under steady state conditions (non-transient), the following must be observed:

PDIP Package:

3.1.
3.2.

Atmel

The sum of all IOL, for all ports, should not exceed 200mA.

The sum of all IOL, for ports A0 - A7 should not exceed 100mA.

Atmel ATmega32A [DATASHEET]

360

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Atmel

3.3. The sum of all IOL, for ports BO - B7, CO - C7, DO - D7 and XTAL2, should not exceed
100mA.

TQFP and QFN/MLF Package:

3.1. The sum of all IOL, for all ports, should not exceed 400 mA.

3.2 The sum of all IOL, for ports A0 - A7, should not exceed 100 mA.

3.3. The sum of all IOL, for ports BO - B4, should not exceed 100 mA.

34. The sum of all IOL, for ports B3 - B7, XTAL2, DO - D2, should not exceed 100 mA.
3.5. The sum of all IOL, for ports D3 - D7, should not exceed 100 mA.

3.6. The sum of all IOL, for ports CO - C7, should not exceed 100 mA.

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not
guaranteed to sink current greater
than the listed test condition.

Although each I/O port can source more than the test conditions (20 mA at Vcc = 5V, 10 mA at Vcc
= 3V) under steady state conditions (non-transient), the following must be observed:

PDIP Package:

4.1. The sum of all IOH, for all ports, should not exceed 200 mA.
4.2. The sum of all IOH, for port A0 - A7, should not exceed 100 mA.

4.3. The sum of all IOH, for ports BO - B7,C0 - C7, DO - D7 and XTAL2, should not exceed 100
mA.

TQFP and QFN/MLF Package:

4.1. The sum of all IOH, for all ports, should not exceed 400 mA.

4.2. The sum of all IOH, for ports AO - A7, should not exceed 100 mA.

4.3. The sum of all IOH, for ports BO - B4, should not exceed 100 mA.

4.4. The sum of all IOH, for ports B3 - B7, XTAL2, DO - D2, should not exceed 100 mA.
4.5. The sum of all IOH, for ports D3 - D7, should not exceed 100 mA.

4.6. The sum of all IOH, for ports CO - C7, should not exceed 100 mA.

If IOH exceeds the test condition, VOH may exceed the

related specification. Pins are not guaranteed to source current greater than the listed test
condition.

Minimum VCC for Power-down is 2.5V.

Atmel ATmega32A [DATASHEET] 361
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

30.2. Speed Grades

Figure 30-1. Maximum Frequency vs. Vcc
N

16 MHz

8 MHz

Safe Operating Area

>
2.7V 4.5V 5.5V
30.3. Clock Characteristics
30.3.1. External Clock Drive Waveforms
Figure 30-2. External Clock Drive Waveforms
tonex
terex toicn — <+ teneL

Vi

ViLi N 7 N

tC LCX ’

- tCLCL d

30.3.2. External Clock Drive
Table 30-3. External Clock Drive

0 8 0 16

1/tcLcL | Oscillator Frequency MHz
tcLeL Clock Period 125 62.5 ns
tcHex High Time 50 25 ns
tcLex Low Time 50 25 ns
tcLcH Rise Time 1.6 0.5 uS
tcHeL Fall Time 1.6 0.5 us
Atc e Change in period from one clock cycle to the 2 2 %
next
AtmeL Atmel ATmega32A [DATASHEET] 362

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Table 30-4. External RC Oscillator, Typical Frequencies

T 1~ T

33 22 650kHz
10 22 2.0MHz
Note:

1. R should be in the range 3kQ - 100kQ, and C should be at least 20pF. The C values given in the
table includes pin capacitance. This will vary with package type.

2. The frequency will vary with package type and board layout.

30.4. System and Reset Characteristics

Table 30-5. Reset, Brown-out and Internal Voltage Reference Characteristics

S s s

VpeoT Power-on Reset Threshold Voltage (rising)!")

Power-on Reset Threshold Voltage (falling) 1.3 23 V

VRsT RESET Pin Threshold Voltage 0.2 0.9 V¢

tRsT Minimum pulse width on RESET Pin 1.5 us

Vgor Brown-out Reset Threshold Voltage?) BODLEVEL=1 25 27 29 V
BODLEVEL=0 3.6 4.0 4.2

tsoDp Minimum low voltage period for Brown-out Detection BODLEVEL = 1 2 us
BODLEVEL =0 2 us

Vhyst | Brown-out Detector hysteresis 50 mV

Vga Bandgap reference voltage 1.15 1.23 1.35 V

teg Bandgap reference start-up time 40 70 | ps

lgc Bandgap reference current consumption 10 us

Note

1. The Power-on Reset will not work unless the supply voltage has been below Vpot (falling).

2. Vot may be below nominal minimum operating voltage for some devices. For devices where this
is the case, the device is tested down to V¢ = Vot during the production test. This guarantees
that a Brown-out Reset will occur before V¢ drops to a voltage where correct operation of the
microcontroller is no longer guaranteed. The test is performed using BODLEVEL = 1 and
BODLEVEL = 0 for ATmega32A.

30.5. Two-wire Serial Interface Characteristics
The table below describes the requirements for devices connected to the Two-wire Serial Bus. The
ATmega32A Two-wire Serial Interface meets or exceeds these requirements under the noted conditions.
Timing symbols refer to Figure 30-3.

AtmeL Atmel ATmega32A [DATASHEET] 363

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Table 30-6. Two-wire Serial Bus Requirements

T S S

tHp;sTA
tLow
tHicH
tsu;sta
tHD;DAT
tsu;pat

tsu;sto

Atmel

Input Low-voltage

Input High-voltage

Hysteresis of Schmitt Trigger
Inputs

Output Low-voltage

Rise Time for both SDA and
SCL

Output Fall Time from V|ymin to
VILmax

Spikes Suppressed by Input
Filter

Input Current each 1/O Pin
Capacitance for each 1/0 Pin

SCL Clock Frequency

Value of Pull-up resistor

Hold Time (repeated) START
Condition

Low Period of the SCL Clock
High period of the SCL clock
Set-up time for a repeated
START condition

Data hold time

Data setup time

Setup time for STOP condition

-0.5
0.7Vcc
0.05Vcc'?)

3mA sink current 0
20 +0.1C,@)

10pF < Cy, < 400pF*) 20 + 0.1C, %)
0

0.1Vee <V < 0.9V -10

fok'®) > max(16fgcy, 0

250kHz)"")

fscL < 100kHz Vee— 0.4V

3mA
fscL > 100kHz Vee— 04V
3mA

fscL < 100kHz 4.0

fscL > 100kHz 0.6

fscL < 100kHz 4.7

fscL > 100kHz 1.3

fscL < 100kHz 4.0

fscL > 100kHz 0.6

fscL < 100kHz 4.7

fscL > 100kHz 0.6

fscL < 100kHz 0

fscL > 100kHz 0

fscL < 100kHz 250

fscL > 100kHz 100

fscL < 100kHz 4.0

fscL > 100kHz 0.6

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

0.3Vcce
Vee + 0.5 V
- \Y
0.4 \Y
300 ns
250 ns
501 ns
10 HA
10 pF
400 kHz
1000ns N2
Cp
300ns 0}
Cp

- us
— s
- us
- s
- us
— s
- us
- s
3.45 us
0.9 us
- ns
- ns
- us
— s

364

A S R [

teur

Note:

ok wbd

Figure 30-3. Two-wire Serial Bus Timing

30.6. SPI Timing Characteristics
See figures below for details.

Table 30-7. SPI Timing Parameters

Bus free time between a STOP
and START condition

fSCL < 100kHz
fscL > 100kHz

1.3 - us

In ATmega32A, this parameter is characterized and not 100% tested.

Required only for fgc > 100kHz.

Cy, = capacitance of one bus line in pF.

fck = CPU clock frequency

This requirement applies to all ATmega32A Two-wire Serial Interface operation. Other devices
connected to the Two-wire Serial Bus need only obey the general fsc| requirement.

THIGH

SCL
SUSTA |es
SDAﬂ

THD;DAT

fLow N

> ¢—> | SU.DAT

N *| tgur

I S T S

© 00 N o o b~ W DN

- A A
N = O

Atmel

SCK period
SCK high/low
Rise/Fall time
Setup

Hold

Out to SCK
SCK to out
SCK to out high
SS low to out
SCK period
SCK high/low("

Rise/Fall time

Master
Master
Master
Master
Master
Master
Master
Master
Slave

Slave

Slave

Slave

See Table 22-5
50% duty cycle
3.6
10
10
0.5 * tgck ns
10
10
15
4 » tck
2« tck
1.6 us

Atmel ATmega32A [DATASHEET] 365
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Setup Slave 10
14 Hold Slave tok
15 | SCKto out Slave 15
16 SCKto SS high Slave 20
17 SS high to tri-state Slave 10
18 SSlow to SCK Slave 2+ tck
Figure 30-4. SPI interface timing requirements (Master Mode)
ss
SCK £) X
(CPOL=0) / 3 X 1 X
2 - 2
SCK X £ 3 £
(CPOL=1) X Y
4|1 »lle
MISO b < :> < >
(Data Input) 1 LS8
—/ PLIY
: £ \ 7
MOSI]
(Data Output) x MSB '\l >< or
SPI interface timing requirements (Slave Mode)
55 __‘ JY
'\‘ 10 16
_ 9 - -t L
SCK £ X
(CPOL=0) 4 3 X 1 X
11 11
SCK 3] £ 3 £ 1
(CPOL=1) 3 1Y
HIB
MOSI
(Data Input) “ or
<1_7>
MISO £ N\ 3
(Data Outpu) —— & MSB \ >< LSB >< X p—
AtmeL Atmel ATmega32A [DATASHEET]

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

" oeseipion e o
13

366

30.7.

ADC Characteristics
Table 30-8. ADC Characteristics

S T S TR

Resolution

Absolute accuracy (Including INL,
DNL, Quantization Error, Gain, and

Offset Error)

Integral Non-linearity (INL)

Differential Non-linearity (DNL)

Gain Error

Offset Error

Conversion Time

Atmel

Single Ended Conversion
Single Ended Conversion
VRer = 4V, Ve = 4V
ADC clock = 200kHz

Single Ended Conversion
VRer = 4V, Ve = 4V
ADC clock = 1MHz

Single Ended Conversion
VREF =4V, VCC =4V
ADC clock = 200kHz

Noise Reduction mode

Single Ended Conversion
VREF = 4V, VCC =4V
ADC clock = TMHz

Noise Reduction mode

Single Ended Conversion
VREF = 4V, VCC =4V
ADC clock = 200kHz

Single Ended Conversion
VRer = 4V, Ve = 4V
ADC clock = 200kHz
Single Ended Conversion
VRer = 4V, Ve = 4V
ADC clock = 200kHz

Single Ended Conversion
VREF = 4V, VCC =4V

ADC clock = 200kHz

1.5

0.75

0.25

0.75

0.75

Atmel ATmega32A [DATASHEET]

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Bits
LSB

LSB

LSB

LSB

LSB

LSB

LSB

LSB

367

S S T I

Clock Frequency

AVce Analog Analog Supply Voltage

VREF Reference Voltage
VN Input voltage
ADC conversion output
Input bandwidth
VINT Internal Voltage Reference
RRrer Reference Input Resistance

Rain Analog Input Resistance

Note:
1. Minimum for AV is 2.7V.

2. Maximum for AV¢c is 5.5V.

Table 30-9. ADC Characteristics

Vee -
0.3"

2.0
GND
0

23

1000
Vee +
0.31%)
AVce
VRer
1023

38.5

2.56 | 2.7

32

100

\Y

\Y
\Y
LSB
kHz

MQ

T N T R

Resolution

Absolute Accuracy

Atmel

Gain = 1x

Gain = 10x

Gain = 200x

Gain = 1x

VRer = 4V, Ve = 5V
ADC clock = 50 - 200kHz
Gain = 10x

VRer = 4V, Ve = 5V
ADC clock = 50 - 200kHz
Gain = 200x

VRer = 4V, Ve = 5V
ADC clock = 50 - 200kHz

Atmel ATmega32A [DATASHEET]
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

10
10
17
16
7

Bits
Bits
Bits
LSB

LSB

LSB

368

symool Paramatr = canion ———in T i unis

Integral Non-linearity (INL) Gain = 1x 0.75 LSB
(Accuracy after calibration for Offset | Vggg =4V, Ve = 5V
gr;ciin Error) ADC clock = 50 - 200kHz
Gain = 10x 0.75 LSB
VRer = 4V, Ve = 5V
ADC clock = 50 - 200kHz
Gain = 200x 2 LSB
VRer = 4V, Ve = 5V
ADC clock = 50 - 200kHz
Gain Error Gain = 1x 1.6 %
Gain = 10x 1.5 %
Gain = 200x 0.2 %
Offset Error Gain = 1x 1 LSB
VRer =4V, Vge = 5V
ADC clock = 50 - 200kHz
Gain = 10x 1.5 LSB
VRer = 4V, Ve = 5V
ADC clock = 50 - 200kHz
Gain = 200x 4.5 LSB
VRer = 4V, Ve = 5V
ADC clock = 50 - 200kHz
Conversion Time 65 260 us
Clock Frequency 50 200 kHz
AVce Analog Analog Supply Voltage Ve - 0.3 Vee +0.39) Vv
VREF Reference Voltage 2.0 AVee-05 |V
VIN Input voltage GND AVce \%
Vpirr Input differential voltage -Vrer/Gain Vgee/Gain |V
ADC conversion output -511 511 LSB
Input bandwidth 4 kHz
VINT Internal Voltage Reference 2.3 2.56 2.7 \%
AtmeL Atmel ATmega32A [DATASHEET] 369

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Symbol | Parameter Condition

RRrer Reference Input Resistance 32 kQ
RaIN Analog Input Resistance 100 MQ
Note:

1. Minimum for AV is 2.7V.
2. Maximum for AV¢c is 5.5V.

Atmel Atmel ATmega32A [DATASHEET] 370

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

31.

Typical Characteristics

Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI
instructions will operate on all bits in the /O Register, writing a one back into any flag read as set, thus
clearing the flag. The CBI and SBI instructions work with registers $00 to $1F only.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency,
loading of 1/0 pins, switching rate of 1/O pins, code executed and ambient temperature. The dominating
factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as C *V¢c*f where C| =
load capacitance, V¢ = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function
properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer enabled and
Power-down mode with Watchdog Timer disabled represents the differential current drawn by the
Watchdog Timer.

Active Supply Current
Figure 31-1. Active Supply Current vs. Low Frequency (0.1 - 1.0 MHz)

ACTIVE SUPPLY CURRENT vs. LOW FREQUENCY
0.1 -1.0 MHz

1.6

1.4 55V

1.2

50V

AN

1 45V

1 40V
?/// | __— 2.7V

Icc (mA)
(=)
o0

—
/%6//

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

AtmeL Atmel ATmega32A [DATASHEET] 371

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 31-2. Active Supply Current vs. Frequency (1 - 16MHz)
ACTIVE SUPPLY CURRENT vs. FREQUENCY

Iec (mA)

Icc (mA)

18

16

14

12

10

1 -16 MHz
- 4.0V
— 1 —T s6v
C—33v
/ ——T1 2.7V
=
0 2 4 6 8 10 12 14 16
Frequency (MHz)
Figure 31-3. Active Supply Current vs. VCC (Internal RC Oscillator, 8MHz)
ACTIVE SUPPLY CURRENT vs. V¢
INTERNAL RC OSCILLATOR, 8 MHz
//
_—
//
=
2.5 35 4 4.5 5 5.5

Atmel

Vee (V)

5.5V

5.0V

4.5V

25 °C
85 °C

-40 °C

Atmel ATmega32A [DATASHEET] 372
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 31-4. Active Supply Current vs. VCC (Internal RC Oscillator, 4MHz)

ACTIVE SUPPLY CURRENT vs. Vic
INTERNAL RC OSCILLATOR, 4 MHz

6 25 °C
/ 85 °C
3 40 °C
4
<
E 3
s
2 =
1
0
2.5 3 3.5 4 4.5 5 5.5
Vee (V)
Figure 31-5. Active Supply Current vs. VCC (Internal RC Oscillator, 1MHz)
ACTIVE SUPPLY CURRENT vs. Vec
INTERNAL RC OSCILLATOR, | MHz
1.6 25°C

1.4 // 85 °C
-40 °C
12 _—

Icc (mA)
[l
[o e}

AtmeL Atmel ATmega32A [DATASHEET]

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

373

Figure 31-6. Active Supply Current vs. VCC (External Oscillator, 32kHz)

ACTIVE SUPPLY CURRENT vs. V¢
EXTERNAL OSCILLATOR, 32 kHz

160
140 25 °C
120 | —
100
2 /
280
ke
60
40
20
0
2.5 3 3.5 4 45 5 55
Vee (V)
31.2. Idle Supply Current
Figure 31-7. Idle Supply Current vs. Low Frequency (0.1 - 1.0MHz)
IDLE SUPPLY CURRENT vs. LOW FREQUENCY
0.1 - 1.0 MHz
0.7
0.6
— 55V
0.5
/ | — 5.0V
= 04 —
E 03 // __— 40V
’ | — | — | __— 3.6V
' | — T 4 +— | — 27V
N 1 — T
: 1
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency (MHz)

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

374

Figure 31-8. Idle Supply Current vs. Frequency (1 MHz - 16 MHz)

IDLE SUPPLY CURRENT vs. FREQUENCY
1-16 MHz

Iec (mA)

5.5V
5.0V
/// 4.5V
- 4.0V
//// 3.6V
—— 3.3V
= — |
0 2 4 6 8 10 12 14 16
Frequency (MHz)
Figure 31-9. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)
IDLE SUPPLY CURRENT vs. V¢
INTERNAL RC OSCILLATOR, § MHz
-40 °C

Atmel

Icc (mA)

/ 25°C
85 °C

_—

\
A

Vee (V)

Atmel ATmega32A [DATASHEET] 375
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 31-10. Idle Supply Current vs. VCC (Internal RC Oscillator, 4MHz)

IDLE SUPPLY CURRENT vs. V¢
INTERNAL RC OSCILLATOR, 4 MHz

-40 °C

/ 25 °C
2 1 85 °C
//

Iec (mA)

)

Vee (V)

Figure 31-11. Idle Supply Current vs. VCC (Internal RC Oscillator, 1MHz)

IDLE SUPPLY CURRENT vs. V¢
INTERNAL RC OSCILLATOR, | MHz

0.8
0.7
85 °C
0.6 / 25°C
/ -40 °C
0.5 /
<
E 04 /7
&}
19}
0.3 //
=
0.2
0.1
0
25 3 35 4 45 5 5.5
Vee (V)
AtmeL Atmel ATmega32A [DATASHEET]

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

376

Figure 31-12. Idle Supply Current vs. VCC (External Oscillator, 32kHz)

IDLE SUPPLY CURRENT vs. V¢
EXTERNAL OSCILLATOR, 32 kHz

40
35
30 25°C
25
<
2 20
§ /
15
/
10
5
0
2.5 3 3.5 4 4.5 5 5.5
Vee (V)
31.3. Power-down Supply Current
Figure 31-13. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
POWER-DOWN SUPPLY CURRENT vs. V¢
WATCHDOG TIMER DIS ABLED
2
1.6 85 °C
-40 °C
1.2
z / 25 °C
2
:d /
0.8 /
/
0
2.5 3 3.5 4 4.5 5 5.5

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

377

Figure 31-14. Power-down Supply Current vs. VCC (Watchdog Timer Enabled)

POWER-DOWN SUPPLY CURRENT vs. V¢
WATCHDOG TIMER ENABLED

85 °C
-40 °C
16 =

/ 25 °C
12 /

Icc (uA)

\

31.4. Power-save Supply current
Figure 31-15. Power-save Supply Current vs. V¢cc (Watchdog Timer Disabled)

POWER-SAVE SUPPLY CURRENT vs. V¢
WATCHDOG TIMER DISABLED

20
25 °C
16
12
<
=
R
8
4
0
2.5 3 3.5 4 4.5 5 5.5
Vee (V)
AtmeL Atmel ATmega32A [DATASHEET]

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

378

31.5. Standby Supply Current
Figure 31-16. Standby Supply Current vs. VCC (WDT Disabled)
STANDBY SUPPLY CURRENT vs. V¢
WATCHDOG TIMER DIS ABLED
0.16
6MHz_xtal
0.14 6MHz_res
ol 4MHz_res
’ 4MHz_xtal
25\ /// / -
b 0.08 / 2MHz_res
~ | —] 2MHz xtal
0.06
450kHz res
oo — | //? IMHz_res
. ——— ———F———
—t—
0.02
0
2.5 3 3.5 4 4.5 5 5.5
Vee (V)
31.6. Pin Pull-up

Figure 31-17. 1/0 Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V)
/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE

Atmel

Iop (uA)

140

120

100

Vee=5V
\25 °C
85 °
¢ \-\40 °C
\x
N
\\
0 1 2 3 4 5 6
Vor (V)

Atmel ATmega32A [DATASHEET]
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

379

Figure 31-18. 1/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V)

/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE
Vee = 2.7V

25 °C

60
SM

50 \\\

40

Iop (uA)

0 0.5 1 1.5 2 2.5 3
Vor (V)

Figure 31-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 5V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
Vee=5V

100

A
RN

IReseT (UA)
~
{e)

I
: AN
\ -40 °C

25 °C
0 85 °C
0 1 2 3 4 5 6
Vreser(V)
AtmeL Atmel ATmega32A [DATASHEET] 380

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 31-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V)

RESET PULL-UP RESISTOR CURRENT vs. RESET PIN VOLTAGE
Vee=2.7V

31.7. Pin Driver Strength
Figure 31-21. 1/0 Pin Source Current vs. Output Voltage (VCC = 5V)

Atmel

IResET (UA)

Ton (mA)

10

N

-40 °C

\ 25°C
— 85 °C

1.5

Vreset(V)

/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE

Vou (V)

VCC: 5V
-40 °C

~25 °C

85 °C

~N
\\
"N

3 3.4 3.8 42 4.6 5

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

381

Figure 31-22. 1/0 Pin Source Current vs. Output Voltage (VCC = 3V)

/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE
Vee=3V

Figure 31-23.

Atmel

Ion (mA)

IoL (mA)

-40 °C

R —

85 °C

N
, AN
N\

1 1.5 2 2.5 3
Vou(V)
1/0 Pin Sink Current vs. Output Voltage (VCC = 5V)
/O PIN SINK CURRENT vs. OUTPUT VOLTAGE
Vee=35V
90
-40 °C
80
25 °C
70
60 85 °C
50
40 /
30 =
20 /A
10
0
0 0.5 1 1.5 2
VoL(V)

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

382

Figure 31-24. 1/O Pin Sink Current vs. Output Voltage (VCC = 3V)

/O PIN SINK CURRENT vs. OUTPUT VOLTAGE
Vee=3V

-40 °C

25 °C

———85°C

Ior (mA)

Ny A

Ay

VoL (V)

31.8. Pin Thresholds and Hysteresis
Figure 31-25. 1/0 Pin Input Threshold Voltage vs. Vcc (Vi4, /0 Pin Read as “1”)

/O PIN INPUT THRESHOLD VOLTAGE vs. V¢
VIH, 10 PIN READ AS 'l'

/ 85°C
25 °C
2.5 /
// -40°C
) ==
S //
E 1.5 ,“‘
e
1
0.5
0
2.5 3 3.5 4 4.5 5 5.5
Vee (V)

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

383

Figure 31-26. 1/O Pin Input Threshold Voltage vs. V¢ (V|, /O Pin Read as “0”)

/O PIN INPUT THRESHOLD VOLTAGE vs. Vcc
VIL, 10 PIN READ AS '0'

Threshold (V)

—_
W

—_

85 °C
25 °C

/ -40 °C

\

_—

Figure 31-27. 1/0O Pin Input Hysteresis vs. V¢c

Atmel

Input Hysteresis (mV)

=
S

O PIN INPUT HYSTERESIS vs. V¢

40 °C
25 °C
// 85 °C
/'/
7-\—#’/
2.5 3 3.5 4 4.5 5 5.5

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

384

Figure 31-28. Reset Input Threshold Voltage vs. V¢c (Viy,Reset Pin Read as “1”)

RESET INPUT THRESHOLD VOLTAGE vs. V¢
VIH, 10 PIN READ AS 'l'

2.5
2 —
/,
_40 oC /%
S 15 /‘
< P —
3 85 °C
s 1
0.5
0
2.5 3 3.5 4 4.5 5 5.5

Vee (V)

Figure 31-29. Reset Input Threshold Voltage vs. V¢c (V|_,Reset Pin Read as “0”)

RESET INPUT THRESHOLD VOLTAGE vs. V¢
VIL, IO PIN READ AS '0'

23 85 °C
/ 25°C
-40 °C
2 //
S 15 //
)
= =
£,
0.5
0
2.5 3 35 4 4.5 5 5.5
Vee (V)
AtmeL Atmel ATmega32A [DATASHEET]

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

385

Figure 31-30. Reset Input Pin Hysteresis vs. V¢

Input Hysteresis (mV)

AV

RESET PIN INPUT HYSTERESIS vs. Vcc

\400(:

N

N

25 °C

85 °C

/

31.9. BOD Thresholds and Analog Comparator Offset
Figure 31-31. BOD Thresholds vs. Temperature (BOD Level is 4.0V)

BOD THRESHOLDS vs. TEMPERATURE
BOD LEVELIS 4.0 V

Atmel

Threshold (V)

Ris ing VCC

Falling VCC

20

Temperature (°C)

40

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

386

Figure 31-32. BOD Thresholds vs. Temperature (BOD Level is 2.7V)

BOD THRESHOLDS vs. TEMPERATURE
BOD LEVELIS 2.7 V

Figure 31-33. Bandgap Voltage vs. V¢c

Bandgap Voltage (V)

Atmel

1.25

1.248

1.246

1.244

1.242

1.24

1.238

1.236

1.234

1.232

Temperature (C)

2.9
Ris ing VCC
2.8
S
=
°©
<
4
=
=
2.1
Fa]]ing VCC
2.6
-60 -40 20 0 20 40 60 80 100

BANDGAP VOLTAGE vs. V¢

//
/] /
1/
/
25 °C I B /
v | — N
-40°C /
2.5 3 3.5 4 4.5 5 5.5
Vee V)

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

387

31.10. Internal Oscillator Speed
Figure 31-34. Watchdog Oscillator Frequency vs. V¢c

WATCHDOG OSCILLATOR FREQUENCY vs. Vcc

1320

1300

1280

1260

1240

1220

Fre (KHz)

1200

1180

1160

1140

1120

_-40°C
25°C
o
~ 7 Jssec
L~
/
/
2.5 3 3.5 4 4.5 5 5.5

Vee (V)

Figure 31-35. Calibrated 8MHz RC Oscillator Frequency vs. Temperature

Frc (MHz)
-3
w

Atmel

CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

\
e ~ 45V
B ~ 35V
\
— 2.7V
60 -40 20 0 20 40 60 80 100
Temperature

Atmel ATmega32A [DATASHEET] 388
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 31-36. Calibrated 8MHz RC Oscillator Frequency vs. VCC
CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. V¢

9
53 40 °C
—
/// 25°C
8
_ |— | ——85°C
< 75
7
6.5
6
2.5 3 3.5 4 4.5 5 5.5

Vee (V)

Figure 31-37. Calibrated 8MHz RC Oscillator Frequency vs. Osccal Value
CALIBRATED 8 MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

16
-40 °C

14

25 °C

12 // 85 °C

o %/
%

Fre (MHz)
\

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL (X1)

AtmeL Atmel ATmega32A [DATASHEET] 389

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 31-38. Calibrated 4MHz RC Oscillator Frequency vs. Temperature
CALIBRATED 4 MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

4.2
4.1
\\
\\
4 —— \\
—
N 3.9
e 50V
2 3.8 \\\\ 4.0V
3.
I ~ 3.6V
37 — T 33V
3.6 T 27y
3.5
-60 -40 20 0 20 40 60 80 100
Temperature
Figure 31-39. Calibrated 4MHz RC Oscillator Frequency vs. V¢c
CALIBRATED 4 MHz RC OSCILLATOR FREQUENCY vs. V¢
4.2
4.1 -40 °C
\ — | 25 °C
/
N 3.9 | 85 °C
N
= N /
3.7
3.6 /
35
2.5 3 35 4 4.5 5 5.5
Vee (V)
AtmeL Atmel ATmega32A [DATASHEET] 390

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 31-40. Calibrated 4MHz RC Oscillator Frequency vs. Osccal Value
CALIBRATED 4 MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

Frc (MHz)
~

-40 °C

25 °C

/
)4

85 °C

\

\
\

64 80 96 112 128 144 192 208 224 240 256

OSCCAL (X1)

160 176

Figure 31-41. Calibrated 2MHz RC Oscillator Frequency vs. Temperature

1.95

Fre (MHz)

1.85

Atmel

CALIBRATED 2 MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

\
\
\ \
T ~ [55V
J.U'V
— ~ 45V
— \\\\ 4.0 \
I ~ 3.6V
T = 33V
B 27V
-60 40 20 0 20 40 60 80 100
Temperature

Atmel ATmega32A [DATASHEET] 391

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 31-42. Calibrated 2MHz RC Oscillator Frequency vs. V¢c

CALIBRATED 2 MHz RC OSCILLATOR FREQUENCY vs. V¢

2.1
2 //
P—
g 1.9 / |
& /
—
1.8
1.7
2.5 3 3.5 4 4.5 5 5.

Vee (V)

Figure 31-43. Calibrated 2MHz RC Oscillator Frequency vs. Osccal Value
CALIBRATED 2 MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

-40 °C
25 °C

85 °C

-40 °C

3.5 /

25 °C
85 °C

\
\

\
\

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

OSCCAL (X1)

AtmeL Atmel ATmega32A [DATASHEET] 392

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 31-44. Calibrated 1MHz RC Oscillator Frequency vs. Temperature

1.04

1.02

FRC (NH‘IZ)
(=)
el
3

CALIBRATED 1 MHz RC OSCILLATOR FREQUENCY vs. TEMPERATURE

\\\
\\2\\>\ 55V
— | — |

[—~ 45V
— —~ 4.0V
O —~ 3.6V
—~ 2.7V

-60 -40 -20 0 20 40 60 80

Temperature

Figure 31-45. Calibrated 1MHz RC Oscillator Frequency vs. V¢c

1.04

1.02

Frc (MHz)
o
o
oo

0.94

Atmel

CALIBRATED 1 MHz RC OSCILLATOR FREQUENCY vs. V¢

100

// / 85 °C
/

Vee (V)

Atmel ATmega32A [DATASHEET] 393
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 31-46. Calibrated 1MHz RC Oscillator Frequency vs. Osccal Value

Frc (MHz)

CALIBRATED 1 MHz RC OSCILLATOR FREQUENCY vs. OSCCAL VALUE

-40 °C

S| 25°c

7 o
// 85 °C

/7

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
OSCCAL (X1)

31.11. Current Consumption of Peripheral Units
Figure 31-47. Brownout Detector Current vs. V¢c

Atmel

Icc (uA)

BROWNOUT DETECTOR CURRENT vs. V¢

20
18 -40 °C
25 °C

16

| — 85 °C
14 ——

—— /
12
/
10 =
8
6
4
2
0
2.5 3 35 4 45 5 5.5
Vee (V)

Atmel ATmega32A [DATASHEET] 394
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

Figure 31-48. ADC Current vs. V¢c (AREF = AV¢c)

ADC CURRENT vs. Ve
AREF = AVCC

350 85 °C
25 °C

/ -40 °C

300

250

200

Icc (uA)

150

100

Vee (V)

Figure 31-49. AREF External Reference Current vs. V¢
AREF EXTERNAL REFERENCE CURRENT vs. V¢

200
85 °C
/ 25°C
-40 °C
150 ———
g
< 100 —
50
0
2.5 3 35 4 4.5 5 5.5
Vee (V)
AtmeL Atmel ATmega32A [DATASHEET]

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

395

Figure 31-50. Analog Comparator Current vs. V¢

ANALOG COMPARATOR CURRENT vs. V¢

100
90
80
85 °C
70
- 25 °C
E — 40 °C
8 I |——]
» ——
30
20
2.5 3 3.5 4 45 5 5.5
Vee (V)
Figure 31-51. Programming Current vs. V¢
PROGRAMMING CURRENT vs. V¢
9
8 40 °C
7
25°C
6
85 °C
§ 5
\é) '\——-_/
3 /
2
1
0
2.5 3 3.5 4 45 5 5.5
Vee (V)
AtmeL Atmel ATmega32A [DATASHEET] 396

Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

31.12. Current Consumption in Reset and Reset Pulsewidth

Figure 31-52. Reset Supply Current vs. Low Frequency (0.1 - 1.0MHz, Excluding Current Through The Reset
Pull-up)

RESET SUPPLY CURRENT vs. V¢c
EXCLUDING CURRENT THROUGH THE RESET PULLUP

25 55V
//
5V
E 15 4.0V
[9) | _— | _— _//
S P | || —36V
1 —] |+ | 33V
——— —— ———
— | —r— T —1 27V
// ///
0.5 ———
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (MHz)

Figure 31-53. Reset Supply Current vs. Frequency (1 - 16MHz, Excluding Current Through The Reset Pull-up)

RESET SUPPLY CURRENT vs. V¢
EXCLUDING CURRENT THROUGH THE RESET PULLUP

16

5.5V
e / 5.0V
12 / 4.5V
/ .
10
< _ 4.0V
£ 3
8 / 3.6V
6
4
— 2.7V
2 ;/
=
0
0 2 4 6 8 10 12 14 16
Frequency (MHz)
AtmeL Atmel ATmega32A [DATASHEET] 397

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

Figure 31-54. Minimum Reset Pulse Width vs. V¢¢

Atmel

Pulsewidth (ns)

800

700

600

500

400

300

200

100

MINIMUM RESET PULSE WIDTH vs. V.

AN
N

[85°C

| 25 °C

-40 °C

Vee (V)

Atmel ATmega32A [DATASHEET]
Atmel-81551-ATmega32A_Datasheet_Complete-08/2016

398

32. Register Summary

I T T T T T T
| T H S \Y N z C

0x3F (0x5F)
0x3E (0x5E)
0x3D (0x5D)
0x3C (0x5C)
0x3B (0x5B)
0x3A (0x5A)
0x39 (0x59)
0x38 (0x58)
0x37 (0x57)
0x36 (0x56)
0x35 (0x55)
0x34 (0x54)
0x33 (0x53)
0x32 (0x52)

0x31 (0x51)

0x30 (0x50)
0x2F (0x4F)
Ox2E (0x4E)
0x2D (0x4D)
0x2C (0x4C)
0x2B (0x4B)
0x2A (0x4A)
0x29 (0x49)
0x28 (0x48)
0x27 (0x47)
0x26 (0x46)
0x25 (0x45)
0x24 (0x44)
0x23 (0x43)
0x22 (0x42)
0x21 (0x41)
ox20(")
(ox40)(1)
0x1F (OX3F)
OX1E (0x3E)
0x1D (0x3D)
0x1C (0x3C)
0x1B (0x3B)
OxX1A (0x3A)
0x19 (0x39)
0x18 (0x38)
0x17 (0x37)
0x16 (0x36)

Atmel

SREG
SPH
SPL
OCRO
GICR
GIFR
TIMSK
TIFR
SPMCR
TWCR
MCUCR
MCUCSR
TCCRO
TCNTO
OSCCAL
OCDR
SFIOR
TCCR1A
TCCR1B
TCNT1H
TCNT1L
OCR1AH
OCR1AL
OCR1BH
OCR1BL
ICR1H
ICR1L
TCCR2
TCNT2
OCR2
ASSR
WDTCR
UBRRH
UCSRC
EEARH
EEARL
EEDR
EECR
PORTA
DDRA
PINA
PORTB
DDRB
PINB

- - - - SP11 SP10 SP9 SP8
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO
Timer/Counter0 Output Compare Register
INT1 INTO INT2 - - - IVSEL IVCE
INTF1 INTFO INTF2 - - - - -
OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIEO TOIEO
OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCFO TOVO
SPMIE RWWSB - RWWSRE BLBSET PGWRT PGERS SPMEN
TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
SE SM2 SM1 SM0 ISC11 ISC10 1SCO01 1SC00
JTD 1ISC2 - JTRF WDRF BORF EXTRF PORF
FOCO WGMO00 COMO1 COMO00 WGMO1 CS02 CSo1 CS00

Timer/Counter0 (8 Bits)
Oscillator Calibration Register

On-Chip Debug Register

ADTS2 ADTS1 ADTSO = ACME PUD PSR2 PSR10
COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10
ICNC1 ICES1 - WGM13 WGM12 Cs12 CS11 CS10

Timer/Counter1 — Counter Register High byte
Timer/Counter1 — Counter Register Low byte
Timer/Counter1 — Output Compare Register A High byte
Timer/Counter1 — Output Compare Register A Low byte
Timer/Counter1 — Output Compare Register B High byte
Timer/Counter1 — Output Compare Register B Low byte
Timer/Counter1 — Input Capture Register High byte
Timer/Counter1 — Input Capture Register Low byte
FOC2 WGM20 COM21 COM20 WGM21 Cs22 Cs21 CS20
Timer/Counter2 (8 Bits)

Timer/Counter2 Output Compare Register

- - - - AS2 TCN2UB OCR2UB TCR2UB
- - - WDTOE WDE WDP2 WDP1 WDPO
URSEL = = = UBRR[11:8]
URSEL UMSEL uPM1 UPMO USBS ucsz1 uCszo UCPOL
- - - - - - EEAR9 EEARS

EEPROM Address Register Low Byte
EEPROM Data Register

= = = = EERIE EEMWE EEWE EERE
PORTA7 PORTAG PORTAS5 PORTA4 PORTA3 PORTA2 PORTA1 PORTAOQ
DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDAO
PINA7 PINAG6 PINAS PINA4 PINA3 PINA2 PINA1 PINAO
PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO
DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO
PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO

Atmel ATmega32A [DATASHEET] 399
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

2 I N T T TN T TN TR T

0x15 (0x35)
0x14 (0x34)
0x13 (0x33)
0x12 (0x32)
0x11 (0x31)
0x10 (0x30)
0XOF (Ox2F)
0XOE (0x2E)
0x0D (0x2D)
0x0C (0x2C)
0xO0B (0x2B)
0XO0A (0x2A)
0x09 (0x29)
0x08 (0x28)
0x07 (0x27)
0x06 (0x26)
0x05 (0x25)
0x04 (0x24)
0x03 (0x23)
0x02 (0x22)
0x01 (0x21)
0x00 (0x20)

Atmel

PORTC
DDRC
PINC
PORTD
DDRD
PIND
SPDR
SPSR
SPCR
UDR
UCSRA
UCSRB
UBRRL
ACSR
ADMUX
ADCSRA
ADCH
ADCL
TWDR
TWAR
TWSR
TWBR

Note:

1.

PORTC7

DDC7
PINC7

PORTD7

DDD7
PIND7

SPIF
SPIE

RXC
RXCIE

ACD
REFS1
ADEN

TWAG
TWS7

PORTC6

DDC6
PINC6

PORTD6

DDD6
PIND6

WCOL
SPE

TXC
TXCIE

ACBG
REFSO0
ADSC

TWAS
TWS6

PORTC5

DDC5
PINC5

PORTD5

DDD5
PINDS

DORD

UDRE
UDRIE

ACO
ADLAR
ADATE

TWA4
TWS5

PORTC4 PORTC3 PORTC2 PORTCH1 PORTCO
DDC4 DDC3 DDC2 DDC1 DDCO
PINC4 PINC3 PINC2 PINC1 PINCO

PORTD4 PORTD3 PORTD2 PORTD1 PORTDO
DDD4 DDD3 DDD2 DDD1 DDDO
PIND4 PIND3 PIND2 PIND1 PINDO

SPI Data Register
- - - - SPI2X
MSTR CPOL CPHA SPR1 SPRO
USART I/O Data Register
FE DOR PE u2x MPCM
RXEN TXEN ucsz2 RXB8 TXB8
USART Baud Rate Register Low byte
ACI ACIE ACIC ACIS1 ACISO
MUX4 MUX3 MUX2 MUX1 MUX0
ADIF ADIE ADPS2 ADPS1 ADPS0
ADC Data Register High byte
ADC Data Register Low byte
Two-wire Serial Interface Data Register
TWA3 TWA2 TWA1 TWAO TWGCE
TWS4 TWS3 - TWPS1 TWPS0

Two-wire Serial Interface Bit Rate Register

When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this
address. Refer to the debugger specific documentation for details on how to use the OCDR

Register.

Refer to the USART description for details on how to access UBRRH and UCSRC.
For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved
I/0O memory addresses should never be written.
Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI
instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set,
thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to Ox1F only.

Atmel ATmega32A [DATASHEET] 400
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

33.

Instruction Set Summary

ARITHMETIC AND LOGIC INSTRUCTIONS --

NEG
SBR
CBR
INC

DEC

CLR
SER
MUL
MULS
MULSU
FMUL
FMULS
FMULSU

Rd, Rr
Rd, Rr
Rdl,K
Rd, Rr
Rd, K
Rd, Rr
Rd, K
Rdl,K
Rd, Rr
Rd, K
Rd, Rr
Rd, K
Rd, Rr

Rd, Rr
Rd, Rr
Rd, Rr
Rd, Rr
Rd, Rr
Rd, Rr

Add two Registers

Add with Carry two Registers
Add Immediate to Word
Subtract two Registers

Subtract Constant from Register

Subtract with Carry two Registers

Subtract with Carry Constant from Reg.

Subtract Immediate from Word
Logical AND Registers

Logical AND Register and Constant
Logical OR Registers

Logical OR Register and Constant
Exclusive OR Registers

One’s Complement

Two’s Complement

Set Bit(s) in Register

Clear Bit(s) in Register

Increment

Decrement

Test for Zero or Minus

Clear Register

Set Register

Multiply Unsigned

Multiply Signed

Multiply Signed with Unsigned
Fractional Multiply Unsigned
Fractional Multiply Signed
Fractional Multiply Signed with Unsigned

Rd < Rd + Rr

Rd«— Rd+Rr+C
Rdh:Rdl < Rdh:Rdl + K
Rd < Rd - Rr

Rd < Rd -K

Rd — Rd-Rr-C

Rd «—~Rd-K-C
Rdh:Rdl < Rdh:Rdl -
Rd < Rd - Rr
Rd <~ Rd - K

Rd < Rd v Rr

Rd <« Rd v K

Rd — Rd @ Rr

Rd « OxFF - Rd

Rd « 0x00 - Rd

Rd <« Rd v K

Rd < Rd - (OxFF - K)
Rd — Rd + 1

Rd <~ Rd -1

Rd — Rd - Rd
Rd «+— Rd @ Rd

Rd < OxFF
R1:R0 « Rd x Rr
R1:R0 < Rd x Rr
R1:R0 < Rd x Rr
R1:R0 « (Rd x Rr) << 1
R1:R0 « (Rd x Rr) << 1
R1:R0 « (Rd x Rr) << 1

Z,CN,V,H
Z,C,N,V,H
Z,C,N\V,S
Z,CN,V,H
Z,C,N,V,H
Z,C\N,V,H
Z,C,N\V,H
Z,CN,\V,S
ZNV
ZN\V
ZN\V
ZN,V
ZN\V
Z,C NV
Z,C,N,V,H
ZN,V
ZN\V
ZN,V
ZN\V
ZN,V
ZN\V
None
ZC

ZC

ZC

ZC

ZC

ZC

N NN N NN

BRANCH INSTRUCTIONS

RJMP Relative Jump PC —~PC+k+1 None

IJMP Indirect Jump to (Z) PC—2Z None 2
JMP(T) k Direct Jump PC —k None 3
RCALL k Relative Subroutine Call PC—PC+k+1 None 8

Atmel ATmega32A [DATASHEET] 401

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Atmel

3

ICALL Indirect Call to (Z) PC—2Z None
cALL() k Direct Subroutine Call PC —k None
RET Subroutine Return PC «— STACK None
RETI Interrupt Return PC — STACK |
CPSE Rd,Rr Compare, Skip if Equal if (Rd=Rr)PC —PC+2o0r3 None
CP Rd,Rr Compare Rd - Rr Z,N,\V,CH
CPC Rd,Rr Compare with Carry Rd-Rr-C Z,N\V,CH
CPI Rd,K Compare Register with Immediate Rd -K Z,N,V,CH
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC — PC + 2 or 3 None
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC «— PC + 2 or 3 None
SBIC P, b Skip if Bit in 1/0 Register Cleared if (P(b)=0) PC — PC + 2 or 3 None
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC — PC + 2 or 3 None
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC—PC+k + 1 None
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC—PC+k + 1 None
BREQ k Branch if Equal if (Z=1)then PC«— PC +k+1 None
BRNE k Branch if Not Equal if (Z = 0) then PC «— PC + k + 1 None
BRCS k Branch if Carry Set if (C=1)then PC—PC +k+ 1 None
BRCC k Branch if Carry Cleared if (C =0) then PC — PC +k + 1 None
BRSH k Branch if Same or Higher if (C =0)then PC—PC +k+ 1 None
BRLO k Branch if Lower if (C=1)then PC «— PC +k + 1 None
BRMI k Branch if Minus if (N=1)then PC—PC +k+ 1 None
BRPL k Branch if Plus if (N =0) then PC — PC +k + 1 None
BRGE k Branch if Greater or Equal, Signed if (N A V=0) then PC — PC + k + 1 None
BRLT k Branch if Less Than Zero, Signed if (NAV=1)then PC — PC +k + 1 None
BRHS k Branch if Half Carry Flag Set if (H=1)then PC «— PC +k + 1 None
BRHC k Branch if Half Carry Flag Cleared if (H=0) then PC — PC +k + 1 None
BRTS k Branch if T Flag Set if (T=1)then PC«— PC +k+1 None
BRTC k Branch if T Flag Cleared if (T =0)then PC — PC +k + 1 None
BRVS k Branch if Overflow Flag is Set if (V=1)then PC —PC +k+1 None
BRVC k Branch if Overflow Flag is Cleared if (V=0)then PC—PC+k+1 None
BRIE k Branch if Interrupt Enabled if (1=1)then PC—PC +k+1 None
BRID k Branch if Interrupt Disabled if (1=0)then PC — PC +k + 1 None

BIT AND BIT-TEST INSTRUCTIONS

Operation

4

1/2/3
1/2/3
1/2/3
1/2/3
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2

nenens | oprnas Lowswin

SBI
CBI

Atmel

Pb
Pb

Set Bit in /0O Register
Clear Bit in I/O Register

I/O(P,b) « 1
I/O(P,b) «— O

None

None

#Clocks

2
2

Atmel ATmega32A [DATASHEET] 402

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

BIT AND BIT-TEST INSTRUCTIONS --

LSL Rd Logical Shift Left Rd(n+1) « Rd(n), Rd(0) < 0 Z,C,NV

LSR Rd Logical Shift Right Rd(n) < Rd(n+1), Rd(7) < 0 Z,CN\V 1
ROL Rd Rotate Left Through Carry Rd(0)«C,Rd(n+1)« Rd(n),C~Rd(7) Z,CN,V 1
ROR Rd Rotate Right Through Carry Rd(7)—C,Rd(n)«— Rd(n+1),C<Rd(0) Z,CNNV 1
ASR Rd Arithmetic Shift Right Rd(n) < Rd(n+1), n=0:6 Z,C NV 1
SWAP Rd Swap Nibbles Rd(3:0)«Rd(7:4),Rd(7:4)~Rd(3:0) None 1
BSET s Flag Set SREG(s) « 1 SREG(s) |1
BCLR s Flag Clear SREG(s) «+ 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T < Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) — T None 1
SEC Set Carry C—1 C 1
CLC Clear Carry C<0 C 1
SEN Set Negative Flag N1 N 1
CLN Clear Negative Flag N0 N 1
SEZ Set Zero Flag Z—1 z 1
CLz Clear Zero Flag Z—0 VA 1
SEI Global Interrupt Enable |1 | 1
CLI Global Interrupt Disable <0 | 1
SES Set Signed Test Flag S—1 S 1
CLS Clear Signed Test Flag S0 S 1
SEV Set Twos Complement Overflow. V1 V 1
CLv Clear Twos Complement Overflow V<0 V 1
SET Set T in SREG Te1 T 1
CLT Clear T in SREG T<0 T 1
SEH Set Half Carry Flag in SREG H«1 H 1
CLH Clear Half Carry Flag in SREG H<0 H 1

DATA TRANSFER INSTRUCTIONS --

Rd, Rr Move Between Registers Rd — Rr None
MOVW Rd, Rr Copy Register Word Rd+1:Rd « Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd — K None 1
LD Rd, X Load Indirect Rd < (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd « (X), X «— X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X« X-1,Rd « (X) None 2
LD Rd, Y Load Indirect Rd « (Y) None |2
AtmeL Atmel ATmega32A [DATASHEET] 403

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

DATA TRANSFER INSTRUCTIONS --

Atmel

Rd, Y+
Rd, -Y
Rd,Y+q
Rd, Z
Rd, Z+
Rd, -Z
Rd, Z+q
Rd, k
X, Rr
X+, Rr
- X, Rr
Y, Rr
Y+, Rr
-Y, Rr
Y+q,Rr
Z,Rr
Z+, Rr
-Z,Rr
Z+q,Rr
k, Rr

Rd, Z
Rd, Z+

Rd, P
P, Rr
Rr
Rd

Load Indirect and Post-Inc.

Load Indirect and Pre-Dec.
Load Indirect with Displacement
Load Indirect

Load Indirect and Post-Inc.
Load Indirect and Pre-Dec.
Load Indirect with Displacement
Load Direct from SRAM

Store Indirect

Store Indirect and Post-Inc.
Store Indirect and Pre-Dec.
Store Indirect

Store Indirect and Post-Inc.
Store Indirect and Pre-Dec.
Store Indirect with Displacement
Store Indirect

Store Indirect and Post-Inc.
Store Indirect and Pre-Dec.
Store Indirect with Displacement
Store Direct to SRAM

Load Program Memory

Load Program Memory

Load Program Memory and Post-Inc
Store Program Memory

In Port

Out Port

Push Register on Stack

Pop Register from Stack

Rd — (Y),Y <Y +1
Y —Y-1,Rd(Y)
Rd — (Y +q)
Rd « (2)

Rd « (2),Z < ZH+1
Z—Z-1,Rd (2)
Rd —(Z+q)
Rd « (k)

(X) < Rr

X) —Rr, X< X+1
X—X-1,(X) < Rr
(Y)"Rr
(Y)<RrY<Y+1
Y—Y-1,(Y)<Rr
(Y+q)<—Rr
(Z2) < Rr
(Z)—RrZ—2Z+1
Z—Z7Z-1,(Z)<Rr
(Z+q)<—Rr
(k) < Rr

RO < (2)
Rd « (2)

Rd « (2), Z « Z+1
(2) < R1:RO
Rd < P

P «— Rr
STACK « Rr

Rd < STACK

Atmel ATmega32A [DATASHEET]
Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None

W W W NN D DN DN DN DN DD DD D DN DN DD DD DD

404

MCU CONTROL INSTRUCTIONS
Mnemonlcs Operands Descrlptlon Operation Flags |#Clocks

No Operation None
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset | (see specific descr. for WDR/timer) None |1
BREAK Break For On-chip Debug Only None N/A

Note: 1. Instruction not available in all devices.

AtmeL Atmel ATmega32A [DATASHEET] 405

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

34.

34.1.

Packaging Information

Atmel

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

44-pin TQFP
PIN 1 IDENTIFIER
[AOOAARAN
PIN1 —fo =
(§] ﬂv E E B
475 = X E1 E
JUuoonmnmm
D— =
€ 0070 |
fg)
> Al— A2 LA
| |- L
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL| MIN NOM MAX | NOTE
A - - 1.20
Al 0.05 - 0.15
A2 0.95 1.00 1.05
D 11.75 12.00 12.25
D1 9.90 10.00 10.10 | Note 2
Notes: E 1175 | 12,00 | 1225
1. This package conforms to JEDEC reference MS-026, Variation ACB. El 9.90 10.00 10.10 | Note 2
2. Dimensions D1 and E1 do not include mold protrusion. Allowable B 030 0.37 0.45
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum ’ . ’
plastic body size dimensions including mold mismatch. C 0.09 0.17) 0.20
3. Lead coplanarity is 0.10mm maximum. L 0.45 0.60 0.75
e 0.80 TYP
06/02/2014
TITLE DRAWING NO.| REV.
/ItmeL Package Drawing Contact: 44A, 44-lead, 10 x 10mm body size, 1.0mm body thickness, 44A C
packagedrawings@atmel.com 0.8 mm lead pitch, thin profile plastic quad flat package (TQFP)
Atmel ATmega32A [DATASHEET] 406

34.2. 40-pin PDIP

(=

LT T N I I I I I [

A

LJ’.‘

E |
/ \ ‘ COMMON DIMENSIONS
0°~15° REF (Unit of Measure = mm)
\‘ —\
| SYMBOL MIN NOM MAX NOTE
eB | A - - 4.826
A1 0.381 - -
D 52.070 - 52.578 | Note 2
E 15.240 - 15.875
E1 13.462 - 13.970 | Note 2
B 0.356 - 0.559
B1 1.041 - 1.651
Notes: L 3.048 - 3.556
1. This package conforms to JEDEC reference MS-011, Variation AC. c 0.203 _ 0.381
2. Dimensions D and E1 do not include mold Flash or Protrusion.
Mold Flash or Protrusion shall not exceed 0.25mm (0.010"). eB 15.494 - 17.526
e 2.540 TYP
13/02/2014
TITLE DRAWING NO.| REV.
Atm eL Package Drawing Contact: 40P6, 40-lead (0.600"/15.24mm Wide) Plastic Dual C
packagedrawings@atmel.com Inline Package (PDIP) 40P6

Atmel

Atmel ATmega32A [DATASHEET]
Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

407

34.3. 44-pin VQFN

(D}
O,
\—Marked Pin# 11D
(E]
P—SE ATING PLANE
TOP VIEW
- |«[X] *
- .
-_> Bl P ~. Pin #1 Co rner SIDE VIEW
== J 3 \
\
\
JUUUUUUUHUUU _
\ 1 ! OptionA %?aﬁl le COMMON DIMENSIONS
> \ N\ 2 , ¢ (Unit of Measure = mm)
= ‘o | =
-] S+ =] SYMBOL| MIN NOM MAX | NOTE
E2 = g A 080 | 090 | 1.00
> — OptionB . ., Al - 0.02 0.05
ham f
g g R A3 0.20 REF
) >) b 0.18 023 0.30
— —
T [000nnnnnnna e R I AT
K pin 1 D2 | 5.00 520 | 540
050 E 690 | 7.00 | 7.10
BOTTOM VIEW E2 5.00 520 | 540
e 0.50 BSC
L 0.59 0.64 0.69
Note : JEDEC Standard MO-220, Fig . 1 (S AW Singulation) VKKD-3 . 0.20 0.26 041
9/26/08
TITLE GPC DRAWING NO. |REV.
Package Drawing Contact: 44M1,44-pad, 7 x 7 x 1.0mm body, lead
Atmel ,;aamel com pitch 0.50mm, 5.20mm exposed pad, thermally ZWS 44M1 H
enhanced plastic very thin quad flat no
lead package (VQFN)
AtmeL Atmel ATmega32A [DATASHEET] 408

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

35. Errata

35.1. ATmega32A, rev. J to rev. K

4.

Atmel

First Analog Comparator conversion may be delayed

Interrupts may be lost when writing the timer registers in the asynchronous timer

IDCODE masks data from TDI input

Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

First Analog Comparator conversion may be delayed

If the device is powered by a slow rising V¢, the first Analog Comparator conversion will take
longer than
expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable the Analog Comparator before
the first
conversion.

Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous
Timer/Counter register (TCNTX) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value OxFF nor 0x00
before writing

to the asynchronous Timer Control Register (TCCRXx), asynchronous Timer Counter Register
(TCNTx), or

asynchronous Output Compare Register (OCRX).

IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by
all-ones
during Update-DR.

Problem Fix / Workaround

« If ATmega32A is the only device in the scan chain, the problem is not visible.

« Select the Device ID Register of the ATmega32A by issuing the IDCODE instruction or by
entering the Test-Logic-Reset state of the TAP controller to read out the contents of its Device
ID Register and possibly data from succeeding devices of the scan chain. Issue the BYPASS
instruction to the ATmega32A while reading the Device ID Registers of preceding devices of
the boundary scan chain.

» If the Device IDs of all devices in the boundary scan chain must be captured simultaneously,
the ATmega32A must be the fist device in the chain.

Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

Atmel ATmega32A [DATASHEET] 409

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR register
triggers an
unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

35.2. ATmega32A, rev. Gtorev. |

Atmel

First Analog Comparator conversion may be delayed

Interrupts may be lost when writing the timer registers in the asynchronous timer

IDCODE masks data from TDI input

Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

First Analog Comparator conversion may be delayed

If the device is powered by a slow rising V¢, the first Analog Comparator conversion will take
longer than
expected on some devices.

Problem Fix/Workaround

When the device has been powered or reset, disable then enable the Analog Comparator before
the first
conversion.

Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the
asynchronous
Timer/Counter register (TCNTX) is 0x00.

Problem Fix/Workaround

Always check that the asynchronous Timer/Counter register neither have the value OxFF nor 0x00
before writing

to the asynchronous Timer Control Register (TCCRX), asynchronous Timer Counter Register
(TCNTx), or

asynchronous Output Compare Register (OCRX).

IDCODE masks data from TDI input

The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are replaced by
all-ones
during Update-DR.

Problem Fix / Workaround

— If ATmega32A is the only device in the scan chain, the problem is not visible.

— Select the Device ID Register of the ATmega32A by issuing the IDCODE instruction or by
entering the Test-Logic-Reset state of the TAP controller to read out the contents of its Device
ID Register and possibly data from succeeding devices of the scan chain. Issue the BYPASS
instruction to the ATmega32A while reading the Device ID Registers of preceding devices of
the boundary scan chain.

Atmel ATmega32A [DATASHEET] 410

Atmel-8155I-ATmega32A_Datasheet_Complete-08/2016

— If the Device IDs of all devices in the boundary scan chain must be captured simultaneously,
the ATmega32A must be the fist device in the chain.
4. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request.

Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR register
triggers an
unexpected EEPROM interrupt request.

Problem Fix / Workaround

Always use OUT or SBI to set EERE in EECR.

AtmeL Atmel ATmega32A [DATASHEET] 411

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

36.

Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring
revision in this section refers to the document revision.

36.1. 8155l - 08/2016
1. Configuration Summary: Pin count and GPIO numbers updated.
36.2. 8155H - 08/2016
1. Updated TQFP (44-pins) pinout drawing:
— Pin 42 changed to PB2 (AINO/INT2) instead of PB2 (AINO/T2)
— Swapped the pin position of XTAL2 and XTAL1: XTAL2 on the pin 7 and XTAL1 on the pin 8
2. Updated PDIP (40-pins) pinout drawing:
— Pin 32 changed to PB2 (AINO/INT2) instead of PB2 (AIN0/T2)
— Swapped the pin position of XTAL2 and XTAL1: XTAL2 on the pin 12 and XTAL1 on the pin
13
3. Removed the table note from the Table 25-1 Analog Comparator Multiplexed Input
36.3. 8155G -10/2015
1. Updated the pinout.
2. New AVR MCU Core drawing added.
36.4. 8155F - 08/2015
1. New workflow used for the publication.
36.5. 8155E -02/2014
1. Updated the Features with Capacitive touch sensing capability.
2. Added Errata: ATmega32A, rev. J to rev. K.
36.6. 8155D -10/2013
1. Added nominal values for symbol B, C and L in the TQFP-44 package drawing, 44-pin TQFP.
36.7. 8155C - 02/2011
1. Updated the datasheet according to the Atmel new brand style guide (new logo, last page, etc).
2. Inserted note in Performing Page Erase by SPIM.
3. Note 6 and Note 7 below Table 30-6 have been removed.
4. Updated Ordering Information to include Tape & Reel and 105°C devices.
5. Updated all Typical Characteristics.
AtmeL Atmel ATmega32A [DATASHEET] 412

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

36.8. 8155B -07/2009
1. Updated Errata.
2. Updated the last page with Atmel’s new addresses.

36.9. 8155A - 06/2008
1. Initial revision (Based on the ATmega32/L datasheet 2503N-AVR-06/08)

Changes done compared ATmega32/L datasheet 2503N-AVR-06/08:

— Updated description in Stack Pointer.

— All Electrical characteristics is moved to Electrical Characteristics.

— Register descriptions are moved to sub sections at the end of each chapter.
— Test limits of Reset Pull-up Resistor (Rrst) in DC Characteristics.

— New graphs in Typical Characteristics.

— New Ordering Information.

AtmeL Atmel ATmega32A [DATASHEET] 413

Atmel-8155]-ATmega32A_Datasheet_Complete-08/2016

/Itmel_ Enabling Unlimited Possibilities® numa

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-8155|-ATmega32A_Datasheet_Complete-08/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, and others are registered trademarks or trademarks of Atmel Corporation in
U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Description
	2. Configuration Summary
	3. Ordering Information
	4. Block Diagram
	5. Pin Configurations
	5.1. VCC
	5.2. GND
	5.3. PortA (PA7:PA0)
	5.4. Port B (PB7:PB0)
	5.5. Port C (PC7:PC0)
	5.6. Port D (PD7:PD0)
	5.7. RESET
	5.8. XTAL1
	5.9. XTAL2
	5.10. AVCC
	5.11. AREF

	6. Resources
	7. Data Retention
	8. About Code Examples
	9. Capacitive Touch Sensing
	10. AVR CPU Core
	10.1. Overview
	10.2. ALU – Arithmetic Logic Unit
	10.3. Status Register
	10.3.1. SREG – The AVR Status Register

	10.4. General Purpose Register File
	10.4.1. The X-register, Y-register and Z-register

	10.5. Stack Pointer
	10.6. Instruction Execution Timing
	10.7. Reset and Interrupt Handling
	10.7.1. Interrupt Response Time

	11. AVR Memories
	11.1. Overview
	11.2. In-System Reprogrammable Flash Program Memory
	11.3. SRAM Data Memory
	11.3.1. Data Memory Access Times

	11.4. EEPROM Data Memory
	11.4.1. EEPROM Read/Write Access
	11.4.2. EEPROM Write during Power-down Sleep Mode
	11.4.3. Preventing EEPROM Corruption

	11.5. I/O Memory
	11.6. Register Description
	11.6.1. EEARL – The EEPROM Address Register Low
	11.6.2. EEARH – The EEPROM Address Register High
	11.6.3. EEDR – The EEPROM Data Register
	11.6.4. EECR – The EEPROM Control Register

	12. System Clock and Clock Options
	12.1. Clock Systems and their Distribution
	12.1.1. CPU Clock – clkCPU
	12.1.2. I/O Clock – clkI/O
	12.1.3. Flash Clock – clkFLASH
	12.1.4. Asynchronous Timer Clock – clkASY
	12.1.5. ADC Clock – clkADC

	12.2. Clock Sources
	12.3. Default Clock Source
	12.4. Crystal Oscillator
	12.5. Low-frequency Crystal Oscillator
	12.6. External RC Oscillator
	12.7. Calibrated Internal RC Oscillator
	12.8. External Clock
	12.9. Timer/Counter Oscillator
	12.10. Register Description
	12.10.1. OSCCAL – The Oscillator Calibration Register

	13. Power Management and Sleep Modes
	13.1. Sleep Modes
	13.2. Idle Mode
	13.3. ADC Noise Reduction Mode
	13.4. Power-down Mode
	13.5. Power-save Mode
	13.6. Standby Mode
	13.7. Extended Standby Mode
	13.8. Minimizing Power Consumption
	13.8.1. Analog-to-Digital Converter (ADC)
	13.8.2. Analog Comparator
	13.8.3. Brown-out Detector
	13.8.4. Internal Voltage Reference
	13.8.5. Watchdog Timer
	13.8.6. Port Pins
	13.8.7. JTAG Interface and On-chip Debug System

	13.9. Register Description
	13.9.1. MCUCR – MCU Control Register

	14. System Control and Reset
	14.1. Resetting the AVR
	14.2. Reset Sources
	14.2.1. Power-on Reset
	14.2.2. External Reset
	14.2.3. Brown-out Detection
	14.2.4. Watchdog Reset

	14.3. Internal Voltage Reference
	14.3.1. Voltage Reference Enable Signals and Start-up Time

	14.4. Watchdog Timer
	14.5. Register Description
	14.5.1. MCUCSR – MCU Control and Status Register
	14.5.2. WDTCR – Watchdog Timer Control Register

	15. Interrupts
	15.1. Interrupt Vectors in ATmega32A
	15.1.1. Moving Interrupts Between Application and Boot Space

	15.2. Register Description
	15.2.1. GICR – General Interrupt Control Register

	16. External Interrupts
	16.1. Register Description
	16.1.1. MCUCR – MCU Control Register
	16.1.2. MCUCSR – MCU Control and Status Register
	16.1.3. GICR – General Interrupt Control Register
	16.1.4. GIFR – General Interrupt Flag Register

	17. I/O Ports
	17.1. Overview
	17.2. Ports as General Digital I/O
	17.2.1. Configuring the Pin
	17.2.2. Reading the Pin Value
	17.2.3. Digital Input Enable and Sleep Modes
	17.2.4. Unconnected Pins

	17.3. Alternate Port Functions
	17.3.1. Alternate Functions of Port A
	17.3.2. Alternate Functions of Port B
	17.3.3. Alternate Functions of Port C
	17.3.4. Alternate Functions of Port D

	17.4. Register Description
	17.4.1. SFIOR – Special Function IO Register
	17.4.2. PORTA – Port A Data Register
	17.4.3. DDRA – Port A Data Direction Register
	17.4.4. PINA – Port A Input Pins Address
	17.4.5. PORTB – The Port B Data Register
	17.4.6. DDRB – The Port B Data Direction Register
	17.4.7. PINB – The Port B Input Pins Address
	17.4.8. PORTC – The Port C Data Register
	17.4.9. DDRC – The Port C Data Direction Register
	17.4.10. PINC – The Port C Input Pins Address
	17.4.11. PORTD – The Port D Data Register
	17.4.12. DDRD – The Port D Data Direction Register
	17.4.13. PIND – The Port D Input Pins Address

	18. Timer/Counter0 and Timer/Counter1 Prescalers
	18.1. Overview
	18.2. Internal Clock Source
	18.3. Prescaler Reset
	18.4. External Clock Source
	18.5. Register Description
	18.5.1. SFIOR – Special Function IO Register

	19. 16-bit Timer/Counter1
	19.1. Features
	19.2. Overview
	19.2.1. Registers
	19.2.2. Definitions
	19.2.3. Compatibility

	19.3. Accessing 16-bit Registers
	19.3.1. Reusing the Temporary High Byte Register

	19.4. Timer/Counter Clock Sources
	19.5. Counter Unit
	19.6. Input Capture Unit
	19.6.1. Input Capture Pin Source
	19.6.2. Noise Canceler
	19.6.3. Using the Input Capture Unit

	19.7. Output Compare Units
	19.7.1. Force Output Compare
	19.7.2. Compare Match Blocking by TCNTn Write
	19.7.3. Using the Output Compare Unit

	19.8. Compare Match Output Unit
	19.8.1. Compare Output Mode and Waveform Generation

	19.9. Modes of Operation
	19.9.1. Normal Mode
	19.9.2. Clear Timer on Compare Match (CTC) Mode
	19.9.3. Fast PWM Mode
	19.9.4. Phase Correct PWM Mode
	19.9.5. Phase and Frequency Correct PWM Mode

	19.10. Timer/Counter Timing Diagrams
	19.11. Register Description
	19.11.1. TCCR1A – Timer/Counter1 Control Register A
	19.11.2. TCCR1B – Timer/Counter1 Control Register B
	19.11.3. TCNT1L – Timer/Counter1 Low byte
	19.11.4. TCNT1H – Timer/Counter1 High byte
	19.11.5. OCR1AL – Output Compare Register 1 A Low byte
	19.11.6. OCR1AH – Output Compare Register 1 A High byte
	19.11.7. OCR1BL – Output Compare Register 1 B Low byte
	19.11.8. OCR1BH – Output Compare Register 1 B High byte
	19.11.9. ICR1L – Input Capture Register 1 Low byte
	19.11.10. ICR1H – Input Capture Register 1 High byte
	19.11.11. TIMSK – Timer/Counter Interrupt Mask Register
	19.11.12. TIFR – Timer/Counter Interrupt Flag Register

	20. 8-bit Timer/Counter2 with PWM and Asynchronous Operation
	20.1. Features
	20.2. Overview
	20.2.1. Registers
	20.2.2. Definitions

	20.3. Timer/Counter Clock Sources
	20.4. Counter Unit
	20.5. Output Compare Unit
	20.5.1. Force Output Compare
	20.5.2. Compare Match Blocking by TCNT2 Write
	20.5.3. Using the Output Compare Unit

	20.6. Compare Match Output Unit
	20.6.1. Compare Output Mode and Waveform Generation

	20.7. Modes of Operation
	20.7.1. Normal Mode
	20.7.2. Clear Timer on Compare Match (CTC) Mode
	20.7.3. Fast PWM Mode
	20.7.4. Phase Correct PWM Mode

	20.8. Timer/Counter Timing Diagrams
	20.9. Asynchronous Operation of the Timer/Counter
	20.9.1. Asynchronous Operation of Timer/Counter2

	20.10. Timer/Counter Prescaler
	20.11. Register Description
	20.11.1. TCCR2 – Timer/Counter Control Register
	20.11.2. TCNT0 – Timer/Counter Register
	20.11.3. OCR0 – Output Compare Register
	20.11.4. ASSR – Asynchronous Status Register
	20.11.5. TIMSK – Timer/Counter Interrupt Mask Register
	20.11.6. TIFR – Timer/Counter Interrupt Flag Register
	20.11.7. SFIOR – Special Function IO Register

	21. 8-bit Timer/Counter0 with PWM
	21.1. Features
	21.2. Overview
	21.2.1. Registers
	21.2.2. Definitions

	21.3. Timer/Counter Clock Sources
	21.4. Counter Unit
	21.5. Output Compare Unit
	21.5.1. Force Output Compare
	21.5.2. Compare Match Blocking by TCNT0 Write
	21.5.3. Using the Output Compare Unit

	21.6. Compare Match Output Unit
	21.6.1. Compare Output Mode and Waveform Generation

	21.7. Modes of Operation
	21.7.1. Normal Mode
	21.7.2. Clear Timer on Compare Match (CTC) Mode
	21.7.3. Fast PWM Mode
	21.7.4. Phase Correct PWM Mode

	21.8. Timer/Counter Timing Diagrams
	21.9. Register Description
	21.9.1. TCCR0 – Timer/Counter Control Register
	21.9.2. TCNT0 – Timer/Counter Register
	21.9.3. OCR0 – Output Compare Register
	21.9.4. TIMSK – Timer/Counter Interrupt Mask Register
	21.9.5. TIFR – Timer/Counter Interrupt Flag Register

	22. SPI – Serial Peripheral Interface
	22.1. Features
	22.2. Overview
	22.3. SS Pin Functionality
	22.3.1. Slave Mode
	22.3.2. Master Mode

	22.4. Data Modes
	22.5. Register Description
	22.5.1. SPCR – SPI Control Register
	22.5.2. SPSR – SPI Status Register
	22.5.3. SPDR – SPI Data Register is a read/write register

	23. USART - Universal Synchronous and Asynchronous serial Receiver and Transmitter
	23.1. Features
	23.2. Overview
	23.2.1. AVR USART vs. AVR UART – Compatibility

	23.3. Clock Generation
	23.3.1. Internal Clock Generation – The Baud Rate Generator
	23.3.2. Double Speed Operation (U2X)
	23.3.3. External Clock
	23.3.4. Synchronous Clock Operation

	23.4. Frame Formats
	23.4.1. Parity Bit Calculation

	23.5. USART Initialization
	23.6. Data Transmission – The USART Transmitter
	23.6.1. Sending Frames with 5 to 8 Data Bits
	23.6.2. Sending Frames with 9 Data Bits
	23.6.3. Transmitter Flags and Interrupts
	23.6.4. Parity Generator
	23.6.5. Disabling the Transmitter

	23.7. Data Reception – The USART Receiver
	23.7.1. Receiving Frames with 5 to 8 Data Bits
	23.7.2. Receiving Frames with 9 Data Bits
	23.7.3. Receive Compete Flag and Interrupt
	23.7.4. Receiver Error Flags
	23.7.5. Parity Checker
	23.7.6. Disabling the Receiver
	23.7.7. Flushing the Receive Buffer

	23.8. Asynchronous Data Reception
	23.8.1. Asynchronous Clock Recovery
	23.8.2. Asynchronous Data Recovery
	23.8.3. Asynchronous Operational Range

	23.9. Multi-Processor Communication Mode
	23.9.1. Using MPCM

	23.10. Accessing UBRRH/UCSRC Registers
	23.10.1. Write Access
	23.10.2. Read Access

	23.11. Register Description
	23.11.1. UDR – USART I/O Data Register
	23.11.2. UCSRA – USART Control and Status Register A
	23.11.3. UCSRB – USART Control and Status Register B
	23.11.4. UCSRC – USART Control and Status Register C
	23.11.5. UBRRL – USART Baud Rate Register Low
	23.11.6. UBBRH – USART Baud Rate Register High

	23.12. Examples of Baud Rate Setting

	24. TWI - Two-wire Serial Interface
	24.1. Features
	24.2. Overview
	24.2.1. SCL and SDA Pins
	24.2.2. Bit Rate Generator Unit
	24.2.3. Bus Interface Unit
	24.2.4. Address Match Unit
	24.2.5. Control Unit

	24.3. Two-Wire Serial Interface Bus Definition
	24.3.1. TWI Terminology
	24.3.2. Electrical Interconnection

	24.4. Data Transfer and Frame Format
	24.4.1. Transferring Bits
	24.4.2. START and STOP Conditions
	24.4.3. Address Packet Format
	24.4.4. Data Packet Format
	24.4.5. Combining Address and Data Packets Into a Transmission

	24.5. Multi-master Bus Systems, Arbitration and Synchronization
	24.6. Using the TWI
	24.6.1. Transmission Modes
	24.6.2. Master Transmitter Mode
	24.6.3. Master Receiver Mode
	24.6.4. Slave Receiver Mode
	24.6.5. Slave Transmitter Mode
	24.6.6. Miscellaneous States
	24.6.7. Combining Several TWI Modes

	24.7. Multi-master Systems and Arbitration
	24.8. Register Description
	24.8.1. TWBR – TWI Bit Rate Register
	24.8.2. TWCR – TWI Control Register
	24.8.3. TWSR – TWI Status Register
	24.8.4. TWDR – TWI Data Register
	24.8.5. TWAR – TWI (Slave) Address Register

	25. AC - Analog Comparator
	25.1. Overview
	25.2. Analog Comparator Multiplexed Input
	25.3. Register Description
	25.3.1. SFIOR – Analog Comparator Control and Status Register
	25.3.2. ACSR – Analog Comparator Control and Status Register

	26. ADC - Analog to Digital Converter
	26.1. Features
	26.2. Overview
	26.3. Starting a Conversion
	26.4. Prescaling and Conversion Timing
	26.4.1. Differential Gain Channels

	26.5. Changing Channel or Reference Selection
	26.5.1. ADC Input Channels
	26.5.2. ADC Voltage Reference

	26.6. ADC Noise Canceler
	26.6.1. Analog Input Circuitry
	26.6.2. Analog Noise Canceling Techniques
	26.6.3. Offset Compensation Schemes
	26.6.4. ADC Accuracy Definitions

	26.7. ADC Conversion Result
	26.8. Register Description
	26.8.1. ADMUX – ADC Multiplexer Selection Register
	26.8.2. ADCSRA – ADC Control and Status Register A
	26.8.3. ADCL – ADC Data Register Low (ADLAR=0)
	26.8.4. ADCH – ADC Data Register High (ADLAR=0)
	26.8.5. ADCL – ADC Data Register Low (ADLAR=1)
	26.8.6. ADCH – ADC Data Register High (ADLAR=1)
	26.8.7. SFIOR – Special Function IO Register

	27. JTAG Interface and On-chip Debug System
	27.1. Features
	27.2. Overview
	27.3. TAP – Test Access Port
	27.4. TAP Controller
	27.5. Using the Boundary-scan Chain
	27.6. Using the On-chip Debug System
	27.7. On-chip Debug Specific JTAG Instructions
	27.8. Using the JTAG Programming Capabilities
	27.9. Bibliography
	27.10. IEEE 1149.1 (JTAG) Boundary-scan
	27.10.1. Features
	27.10.2. System Overview

	27.11. Data Registers
	27.11.1. Bypass Register
	27.11.2. Device Identification Register
	27.11.2.1. Version
	27.11.2.2. Part Number
	27.11.2.3. Manufacturer ID

	27.11.3. Reset Register
	27.11.4. Boundary-scan Chain

	27.12. Boundry-scan Specific JTAG Instructions
	27.12.1. EXTEST; 0x0
	27.12.2. IDCODE; 0x1
	27.12.3. SAMPLE_PRELOAD; 0x2
	27.12.4. AVR_RESET; 0xC
	27.12.5. BYPASS; 0xF

	27.13. Boundary-scan Chain
	27.13.1. Scanning the Digital Port Pins
	27.13.2. Boundary-scan and the Two-wire Interface
	27.13.3. Scanning the RESET Pin
	27.13.4. Scanning the Clock Pins
	27.13.5. Scanning the Analog Comparator
	27.13.6. Scanning the ADC

	27.14. ATmega32A Boundary-scan Order
	27.15. Boundary-scan Description Language Files
	27.16. Register Description
	27.16.1. OCDR – On-chip Debug Register
	27.16.2. MCUCSR – MCU Control and Status Register

	28. BTLDR - Boot Loader Support – Read-While-Write Self-Programming
	28.1. Features
	28.2. Overview
	28.3. Application and Boot Loader Flash Sections
	28.3.1. Application Section
	28.3.2. BLS – Boot Loader Section

	28.4. Read-While-Write and No Read-While-Write Flash Sections
	28.4.1. RWW – Read-While-Write Section
	28.4.2. NRWW – No Read-While-Write Section

	28.5. Boot Loader Lock Bits
	28.6. Entering the Boot Loader Program
	28.7. Addressing the Flash During Self-Programming
	28.8. Self-Programming the Flash
	28.8.1. Performing Page Erase by SPM
	28.8.2. Filling the Temporary Buffer (Page Loading)
	28.8.3. Performing a Page Write
	28.8.4. Using the SPM Interrupt
	28.8.5. Consideration While Updating Boot Loader Section (BLS)
	28.8.6. Prevent Reading the RWW Section During Self-Programming
	28.8.7. Setting the Boot Loader Lock Bits by SPM
	28.8.8. EEPROM Write Prevents Writing to SPMCR
	28.8.9. Reading the Fuse and Lock Bits from Software
	28.8.10. Preventing Flash Corruption
	28.8.11. Programming Time for Flash when Using SPM
	28.8.12. Simple Assembly Code Example for a Boot Loader
	28.8.13. ATmega32A Boot Loader Parameters

	28.9. Register Description
	28.9.1. SPMCR – Store Program Memory Control Register

	29. Memory Programming
	29.1. Program and Data Memory Lock Bits
	29.2. Fuse Bits
	29.2.1. Latching of Fuses

	29.3. Signature Bytes
	29.4. Signature Bytes
	29.5. Calibration Byte
	29.6. Parallel Programming Parameters, Pin Mapping, and Commands
	29.6.1. Signal Names

	29.7. Parallel Programming
	29.7.1. Enter Programming Mode
	29.7.2. Considerations for Efficient Programming
	29.7.3. Chip Erase
	29.7.4. Programming the Flash
	29.7.5. Programming the EEPROM
	29.7.6. Reading the Flash
	29.7.7. Reading the EEPROM
	29.7.8. Programming the Fuse Low Bits
	29.7.9. Programming the Fuse High Bits
	29.7.10. Programming the Lock Bits
	29.7.11. Reading the Fuse and Lock Bits
	29.7.12. Reading the Signature Bytes
	29.7.13. Reading the Calibration Byte
	29.7.14. Parallel Programming Characteristics

	29.8. Serial Downloading
	29.9. Serial Programming Pin Mapping
	29.9.1. Serial Programming Algorithm
	29.9.2. Data Polling Flash
	29.9.3. Data Polling EEPROM
	29.9.4. SPI Serial Programming Characteristics

	29.10. Programming Via the JTAG Interface
	29.10.1. Programming Specific JTAG Instructions
	29.10.2. AVR_RESET (0xC)
	29.10.3. PROG_ENABLE (0x4)
	29.10.4. PROG_COMMANDS (0x5)
	29.10.5. PROG_PAGELOAD (0x6)
	29.10.6. PROG_PAGEREAD (0x7)
	29.10.7. Data Registers
	29.10.8. Reset Register
	29.10.9. Programming Enable Register
	29.10.10. Programming Command Register
	29.10.11. Virtual Flash Page Load Register
	29.10.12. Virtual Flash Page Read Register
	29.10.13. Programming Algorithm
	29.10.14. Entering Programming Mode
	29.10.15. Leaving Programming Mode
	29.10.16. Performing Chip Erase
	29.10.17. Programming the Flash
	29.10.18. Reading the Flash
	29.10.19. Programming the EEPROM
	29.10.20. Reading the EEPROM
	29.10.21. Programming the Fuses
	29.10.22. Programming the Lock Bits
	29.10.23. Reading the Fuses and Lock Bits
	29.10.24. Reading the Signature Bytes
	29.10.25. Reading the Calibration Byte

	30. Electrical Characteristics
	30.1. DC Characteristics
	30.2. Speed Grades
	30.3. Clock Characteristics
	30.3.1. External Clock Drive Waveforms
	30.3.2. External Clock Drive

	30.4. System and Reset Characteristics
	30.5. Two-wire Serial Interface Characteristics
	30.6. SPI Timing Characteristics
	30.7. ADC Characteristics

	31. Typical Characteristics
	31.1. Active Supply Current
	31.2. Idle Supply Current
	31.3. Power-down Supply Current
	31.4. Power-save Supply current
	31.5. Standby Supply Current
	31.6. Pin Pull-up
	31.7. Pin Driver Strength
	31.8. Pin Thresholds and Hysteresis
	31.9. BOD Thresholds and Analog Comparator Offset
	31.10. Internal Oscillator Speed
	31.11. Current Consumption of Peripheral Units
	31.12. Current Consumption in Reset and Reset Pulsewidth

	32. Register Summary
	33. Instruction Set Summary
	34. Packaging Information
	34.1. 44-pin TQFP
	34.2. 40-pin PDIP
	34.3. 44-pin VQFN

	35. Errata
	35.1. ATmega32A, rev. J to rev. K
	35.2. ATmega32A, rev. G to rev. I

	36. Datasheet Revision History
	36.1. 8155I - 08/2016
	36.2. 8155H - 08/2016
	36.3. 8155G - 10/2015
	36.4. 8155F - 08/2015
	36.5. 8155E - 02/2014
	36.6. 8155D – 10/2013
	36.7. 8155C - 02/2011
	36.8. 8155B – 07/2009
	36.9. 8155A – 06/2008

